
User Manual

for

KRUSADER
Ken’s Rather Useless Symbolic Assembly Development Environment for the Replica 1

or is that Reasonably Useful? You decide!

Ken Wessen

ken.wessen@gmail.com

Version 1.2 – August 30, 2006

1 Introduction

KRUSADER is a program written to allow assembly language development on the Replica 1 –

an Apple 1 clone designed by Vince Briel1, and described in the book Apple 1 Replica Creation:

Back to the Garage by Tom Owad2. KRUSADER includes a simple shell and editor, a single-pass

symbolic assembler, a disassembler, and a simple interactive debugger, and fits in just under 4K

(so it is small enough to fit in the 8K of Replica 1 ROM along with the monitor and Apple BASIC).

Although designed for the Replica 1/Apple 1, there is very little system dependent code, and since

full source code is provided, KRUSADER can easily be adapted to any other 6502 based system.

However, it’s limitations may mean it is not an appropriate tool in many cases (for example, it

has no concept of a file-system and so would not be particularly suitable for use on an Apple II).

KRUSADER handles a fairly standard and expressive syntax for its assembly source code. For

users who are unfamiliar with the 6502 instruction set, I recommend the introduction by Andrew

John Jacobs at http://www.obelisk.demon.co.uk/6502/. On a Replica 1, KRUSADER can

assemble over 200 lines of code per second, and given its 32K of RAM, the defaults provide space

for around 20K of tokenised source code, 7K of generated code, and up to 256 global symbols.

The KRUSADER distribution is comprised of two source files, one that can assemble and disas-

semble 6502 code only, and the another that is able to handle the expanded 65C02 instruction set

(see section 6). Both versions include a mini-monitor for interactive debugging (see section 7). In

addition, two binaries of each version are supplied – one to be loaded in high RAM at addresses

$7100-$7FFF, and the other that belongs in ROM from $F000-$FEFF. Since source is provided,

alternative binaries are easy to produce. I use the 6502 simulator by Michal Kowalski3 to assemble

1http://www.brielcomputers.com
2http://www.applefritter.com/replica
3http://home.pacbell.net/michal k/

1

http://www.obelisk.demon.co.uk/6502/
http://www.brielcomputers.com
http://www.applefritter.com/replica
http://home.pacbell.net/michal_k/

the object code, and test it on the Pom1 simulator4 and my Replica 1. Although the latest version

of KRUSADER supports the 65C02, it contains only 6502 code itself, and this manual will cover

the 6502 features first, saving a discussion of the 65C02 enhancements until section 6. Addresses

quoted in this manual will be for the high RAM version of the code, with the ROM version values

following in brackets, but these values are easily offset for any particular starting address.

2 Sample Session

The best way to give a quick overview of the system and its operation is to work through a

couple of simple examples. First thing is to load the program, and once loaded run it by typing

7100R(F000R). At this point you will be presented with a brief message showing the version of

the assembler you are running, followed by the shell prompt ? . Type N to enter a new program,

and enter the code shown below. The column layout is important, with the source organised in

fields. After the current line number is printed by the editor, the next 6 characters are the label

field, then after a space there is the 3 character mnemonic field, then after a space a 14 character

arguments field, and finally a comments field of maximum 10 characters. Hitting tab or space will

automatically progress you to the next field, and to finish entering code, hit the escape key (hit

return first though, or you will lose the current line). If you make an error typing a line, hitting

backspace will return you to the start of the line (there is no true backspace on the Apple 1, and I

have chosen not to implement the underscore-as-backspace hack used in the Apple 1 monitor and

Apple 1 BASIC since it confuses the syntactically important column layout). If you only notice

an error after hitting return and need to change a line, type E nnn, where nnn is the line number

in question (it is not necessary to enter any leading zeroes). If you missed a line out altogether,

type I nnn to insert at line nnn.

? N

000 LDA #’A’

001 LOOP JSR $FFEF

002 CLC

003 ADC #$1

004 CMP #’Z’+1

005 BNE LOOP

006 RTS

007<esc>

When you have finished entering the source, type L to list the code, and then A to assemble it. You

should see the assembler output 0300-030C, indicating the target memory locations used by the

assembled code. Any errors detected in the code will be displayed at this point, and can be fixed

using either the I and E commands described above, or the X nnn mmm command for deleting

a range of lines (the second argument mmm is optional). Once the code has been successfully

assembled, run it by typing R $300. The program will run and output the string

4The original is at http://www.chez.com/apple1/Apple1project/, and a version that fixes various bugs at
http://school.anhb.uwa.edu.au/personalpages/kwessen/apple1. This version also adds the capability to em-
ulate a 65C02-based Replica 1.

2

http://www.chez.com/apple1/Apple1project/
http://school.anhb.uwa.edu.au/personalpages/kwessen/apple1

ABCDEFGHIJKLMNOPQRSTUVWXYZ

and then return to the shell (because of the final RTS).

In order to illustrate some more advanced features of the assembler, a second, more complicated

example is the following.

000 ECHO .= $FFEF

001 START .= ’A’

002 END .= ’Z’

003 STEP .= $30

004

005 SETUP .M $280

006 LDA #$1

007 STA STEP

008 LDA #START

009 RTS

00A

00B FWD .M $300

00C .LOOP JSR ECHO

00D CLC

00E ADC STEP

00F CMP #END

010 BMI .LOOP

011 RTS

012

013 BACK .M $320

014 .LOOP JSR ECHO

015 SEC

016 SBC STEP

017 CMP #START

018 BPL .LOOP

019 RTS

01A

01B MAIN .M $340

01C JSR SETUP

01D JSR FWD

01E JSR BACK

01F RTS

020<esc>

Again, type L to list the code. Since this program is longer than 24 lines (i.e. one Apple 1 screen),

the listing will pause after 22 lines and wait for a keypress. Hitting return will move the listing

forward by one line, escape will cancel the listing, and any other key will list the next 22 lines.

Typing A will assemble the code – this time made up of 4 modules, each with their own starting

address. The assembler will output the following upon successful assembly:

3

? A

0300-02FF

SETUP 005 0280-0286

FWD 00B 0300-030A

BACK 013 0320-032A

MAIN 01B 0340-0349

?

This output shows the first source line number and the memory locations used by each module in

the source code (the first line can be ignored because no code is generated prior to the declaration

of the SETUP module). Hitting M will show the memory taken up by the source code, in this case

2000-20E5(2300-23E5), and the value of global symbols can be queried by using the V command

– e.g. typing V MAIN will get the response 0340. This is important, because it is the entry point

for this program, and running it by typing either R $340 or R MAIN will result in the output:

ABCDEFGHIJKLMNOPQRSTUVWXYZYXWVUTSRQPONML

KJIHGFEDCBA

Some other relevant features of this second example are the use of blank lines for layout, and

symbols to represent both constants (e.g. START .= ’A’) and memory locations (e.g. STEP .=

$30). Also note the use of the local label .LOOP in both the FWD and BACK modules. Local labels

are indicated by an initial ‘.’, and have module level scope only. The .= and .M commands are

two directives recognised by the assembler for defining symbols and modules respectively. It is not

necessary to give a memory location argument to the .M directive, and indeed only in very special

circumstances would you wish to do so.

3 Shell Commands

The previous section introduced most of the available shell commands, in the context of a

sample interactive session. Shell commands are entered in response to the ? prompt, and are all

single key commands, with between zero and two arguments. If the shell cannot process an entered

command, ERR: SYN is output to indicate a syntax error. Five of the twelve shell commands are

for source editing, and the others are for assembling, running, disassembling, querying symbols

and source memory, entering the monitor, and recovery. Table 1 gives a summary of all commands

and their syntax.

4 Source Code

As described in section 2, source code in KRUSADER requires strict adherence to a specific

column-based format. The editor both assists and enforces source code entry to match this format

by auto-forwarding on a space and ignoring invalid keypresses. In addition, any non-blank line

must have either a valid mnemonic or directive, or start with the comment character (;). The

sections below describe the source format and the legal entries for each field in detail.

4

Command Arguments Action

N Start a new program. This command will clear any ex-
isting source, and prompt for source entry from line 000.

I <nnn> Insert code from line nnn, or at the end if no argument.
If k lines are inserted, existing lines from nnn are shifted
down by k.

L <nnn> List the source starting from line nnn, or the beginning
if no argument. The listing pauses for input every page
– hitting return shows the next line, escape cancels the
listing, and any other key shows the next page.

X nnn <mmm> Delete from lines nnn to mmm inclusive. If just one
argument, delete line nnn only. Care must be taken
since this will change the line number associated with
all subsequent source lines. Delete cannot be undone.

E nnn Edit line nnn, and insert after. This is equivalent to typ-
ing X nnn followed by I nnn, so the existing line is deleted
immediately, and as for the X command, it cannot be
recovered.

M Show the memory range used to store the current source
code.

A Assemble the current source code.

V LABEL Show the value of the given label or expression.

R $nnnn or LABEL Run from address $nnnn. If the program ends with an
RTS, control is returned to the shell. Otherwise, re-enter
the shell at address $711C($F01C).

D <$nnnn or LABEL> Disassemble 20 instructions from address $nnnn, or con-
tinue from the last address if no argument.

$ Drop into the Apple 1 Monitor. You can re-enter the
shell at address $711C($F01C).

P <c> Panic! This command attempts to recover lost source
(usually due to zero page data corruption). If the first
line of source starts with a label, then give the first letter
of that label as an argument to this command. For more
detail, see the section on source tokenisation 8.2

Table 1: KRUSADER shell commands. Note that any shell commands that use labels are dependent
on the assembler’s global symbol table being intact, specifically the pointer information in zero
page locations $E9, $EA and $EB, and the table data itself (see figure 1). Optional arguments are
indicated by < · · · >.

5

4.1 Labels

Labels are up to 6 alphanumeric characters in length, and may be either global or local in

scope. Local labels are defined for the current module only, whereas global labels are accessible

anywhere in the program. Up to 256 global labels may be defined, and up to 32 local labels in any

one module. Local labels are any labels that begin with a . (i.e. a period).

Labels may be used prior to being defined, i.e. as forward references, and up to 85 forward

references are allowed. However, forward references are more limited than normal labels since they

are always treated as words (i.e. 2 bytes in size), and any expression involving them must also

result in a 2 byte value. In particular this means forward references cannot be used with the < and

> operators (see section 4.5).

Once any particular module has been assembled, all local labels are cleared and an error is

reported if any forward references involving local labels remain unresolved. However, any forward

references to global labels that remain unresolved are simply held, and will only cause an error if

they are still unresolved once assembly of the entire program has been completed.

KRUSADER will report an error if a global label is redefined, or a local label is redefined within

a module.

4.2 Mnemonics

KRUSADER recognises the standard 3 character mnemonics for all legal 6502 instructions.

These are shown in table 2. Undocumented opcodes are not supported, and the 65C02 support is

discussed in section 6. The editor will not accept any line with an invalid entry in the mnemonic

field. Note that when the 6502 executes a BRK instruction, the return address pushed onto the stack

is PC+2, and so KRUSADER assembles the BRK opcode as two $00 bytes and an RTI will return to

the next instruction. However, the disassembler will show these as consecutive BRK instructions.

Operation Mnemonics

Load/Store LDA, LDX, LDY, STA, STX, STY

Transfer TAX, TXA, TAY, TYA, TSX, TXS

Stack PHA, PLA, PHP, PLP

Logical AND, EOR, ORA, BIT

Arithmetic ADC, SBC, CMP, CPX, CPY

Increment/Decrement INC, INX, INY, DEC, DEX, DEY

Shift ASL, LSR, ROL, ROR

Jump/Call JMP, JSR, RTS

Branch BCC, BCS, BEQ, BNE, BMI, BPL, BVC, BVS

Status Flag CLC, CLD, CLI, CLV, SEC, SED, SEI

Other BRK, NOP, RTI

Table 2: Recognised mnenomics.

6

4.3 Arguments

Table 3 shows the argument format for each of the 6502’s addressing modes. In addition, $nnnn

can always be replaced by a label or expression, and similarly $nn so long as the result is a single

byte. (Expressions are introduced in section 4.5 below.) A single byte may also be represented

using ‘c’ for a given printable character when immediate mode is being used. Whenever a word

sized argument actually has a high byte of zero and the corresponding byte size addressing mode

is legal, the byte size mode will be used. In addition, some mnemonics support the absolute,Y

addressing mode but not the zero page,Y mode. In these cases, a byte sized argument will be

increased to word size in order to make the instruction legal. Constants are always hexadecimal.

Addressing Mode Format Addressing Mode Format

Implicit Absolute $nnnn

Accumulator Absolute,X $nnnn,X

Immediate #$nn or #’c’ Absolute,Y $nnnn,Y

Zero Page $nn Indirect ($nnnn)

Zero Page,X $nn,X Indexed Indirect ($nn,X)

Zero Page,Y $nn,Y Indirect Indexed ($nn),Y

Relative *+/-nn

Table 3: Source code syntax for the 13 addressing modes of the 6502.

4.4 Comments

There are two ways to include comments in KRUSADER source. Full line comments may be

entered by typing a ‘;’ character as the first character in the line, followed by a space5. Then

all line space from the mnemonic field onwards can be used for comment text. Alternatively, the

remainder of any line after the end of the argument field is also reserved for comments, and in this

case, no special character is required to preceed their entry.

Comment entry is the only place where spaces are treated literally, and examples of both kinds

of comments are shown in the code snippet below:

003 ; HERE IS A LONG COMMENT

004 CMP #’Z’+1 HERE ARE

005 BNE LOOP SHORT ONES

4.5 Expressions

KRUSADER allows the use of 4 operators in a mnemonic’s argument: +, -, < and > for plus,

minus, low byte and high byte respectively. The plus and minus operators take a constant signed

byte argument only, and unlike other places where constants are employed, the argument requires

no preceeding $. The high and low byte operators are used to extract the relevant single byte from

5Strictly speaking the space is not required, but if it is absent, the source formatting will be upset.

7

a word sized constant or label, and have lower precedence than + and -, and so are applied last of

all when evaluating the expression.

For example, if we define the symbols BYTE .= $12 and WORD .= $3456, then the following

expressions are evaluated as listed below:

• BYTE+1 = $13, • WORD+FF = $3455,

• BYTE+80 = $FF92, • >WORD = $34,

• <BYTE+80 = $92, • <WORD = $56,

• WORD+1 = $3457, • >WORD+10 = $34,

• WORD-1 = $3455, • <WORD+10 = $66.

As described in section 4.1, forward references can be used in expressions involving the + and

- operators, but not in expressions involving the < and > operators.

4.6 Directives

In addition to the 6502 mnemonics described in section 4.2, KRUSADER supports a number of

directives for managing symbolic constants, program structure and data. Directives are entered in

the mnemonic field, and always consist of a period followed by a single letter. Each of the available

directives is described in table 4 below.

Directive Action

LABEL .= $nnnn Define a named constant. The label must be global in
scope, and redefinitions are ignored without error. Ex-
pressions or a quoted character are allowed.

LABEL .M <$nnnn> Define a new module, optionally at the specified address,
or else just continuing on from the previous module.
The label must be global in scope, and redefinitions are
ignored without error. Expressions are not allowed.

<LABEL> .B $nn Store the byte-sized value $nn at the current PC. Ex-
pressions or a quoted character are allowed, but not for-
ward references.

<LABEL> .W $nnnn Store the word-sized value $nnnn at the current PC in
little-endian byte order. Expressions are allowed, but
not forward references.

<LABEL> .S ’cc. . .c’ Store the string literal at the current PC. The string
must be 13 characters or less, and may not containt
spaces.

Table 4: Directives supported by KRUSADER. Optional fields are indicated by < · · · >.

8

5 Errors

Error reporting in KRUSADER is necessarily limited by its size constraints, but nevertheless it

attempts to capture as many errors and ambiguities as possible, and report them in a meaningful

way. Errors can arise in response to a shell command or as a result of an assembly. When

appropriate, the offending line or symbol will be displayed.

Error Meaning

ERR: SYN Syntax error in either a shell command or a source code line.

ERR: MNE An illegal mnemonic code was encountered.

ERR: ADD An illegal addressing mode was encountered.

ERR: SYM A needed symbol was not found.

ERR: OVF Too many symbols has lead to a symbol table overflow.

Table 5: KRUSADER error messages.

There are many reasons why an “ERR: ADD” may occur, especially if the offending line involves

symbols. For this reason it can be helpful to query the symbols involved using the V command

(see table 1). If the symbol is indeed the cause of the addressing mode error, the V command will

report a more useful error, specifically “ERR: SYM” if the symbol is undefined, or “ERR: OVF” if

the symbol tables are full.

6 65C02 Support

With version 1.2 of KRUSADER, optional support for the 65C02 processor has been included.

The 65C02 is an enhanced version of the basic 6502 chip, offerring some extra operations and ad-

dressing modes, and fixing a few problems with the original design6. Although these enhancements

are all useful, essentially the changes are a case of “too little, too late” and frequently programmers

choose to stick to pure 6502 code for portability reasons. In addition, 65C02s from various man-

ufacturers have slightly different command sets, thus adding to the confusion. However, since the

65C02 is the CPU in nearly all Replica 1 computers, it makes good sense for KRUSADER to sup-

port this chip, and this section describes this support. Nevertheless, no 65C02 specific operations

are used in the KRUSADER code itself.

6.1 Additional Mnemonics

The ten 65C02 instructions supported by KRUSADER are listed in table 6. Each of these is

valid on all versions of the 65C02, and also on the 65C816. No other instructions are supported

– specifically the single bit instructions BBR, BBS, RMB, SMB found on the Rockwell and WDC

versions of the 65C02, and the STP and WAI instructions found on the Rockwell 65C02 only are

not recognised.

6See http://www.obelisk.demon.co.uk/65C02/ for a brief introduction to the 65C02.

9

http://www.obelisk.demon.co.uk/65C02/

Operation Mnemonics

Load/Store STZ

Stack PHX, PLX, PHY, PLY

Logical TSB, TRB

Increment/Decrement INA, DEA

Branch BRA

Table 6: Additional mnenomics supported by the 65C02 version of KRUSADER.

6.2 Additional Addressing Modes

The 65C02 introduced two new addressing modes – zero page indirect and absolute indexed

indirect. The KRUSADER source code syntax for these modes is shown in table 7.

Addressing Mode Format

Zero Page Indirect ($nn)

Absolute Indexed Indirect ($nnnn,X)

Table 7: Source code syntax for the additional 65C02 addressing modes.

7 The Mini-Monitor

The 8K of Replica 1 ROM, with Integer BASIC, the Monitor, and KRUSADER, leaves just

enough space for a simple interactive debugger, and this section describes the debugger included

with the ROM version of KRUSADER. By making the IRQBRK vector at $FFFE,F point to the

DEBUG routine at address $FE17 ($FE0A for the 65C02 version), execution of a BRK passes control

to the mini-monitor, and the registers and next instruction are displayed as follows:

A-41 X-FF Y-07 S-FD P-23 CZ

0306 20 EF FF JSR $FFEF

-

The P register is shown both as a value, and as a string from “NVBDIZC” indicating which flags

are set. (In the above example, the zero flag (Z) and the carry flag (C) are set.) The - prompt

indicates that the mini-monitor is waiting for a command. Valid commands are shown in table

8, and are used to change the register values, set the next instruction location, or drop into the

Apple 1 monitor.

To return to the mini-monitor from the Apple 1 monitor, type FE21R (or FE0AR if you are

running the 65C02 version). Another useful address to remember is the 20 instruction disassembly

routine at $FADA ($FAF8 for the 65C02 version), but bear in mind that using this routine involves

changing the stored PC value at locations $F5 and $F6, and this must be restored, using either

the monitor or the mini-monitor, if you wish to resume the program being monitored.

10

Command Action

Ann Put the value $nn into the A register.

Xnn Put the value $nn into the X register.

Ynn Put the value $nn into the Y register.

Snn Put the value $nn into the S register.

Pnn Put the value $nn into the P register.

Lnn Set the low byte of the PC for the next instruction to
be executed to the value $nn.

Hnn Set the high byte of the PC for the next instruction to
be executed to the value $nn.

R Resume execution at the currently displayed instruction.

$ Enter the Apple 1 monitor.

T Trace execution step by step (6502 version only).

Table 8: Mini-monitor commands.

7.1 Sample Mini-Monitor Session

This section gives a short example of a mini-monitor session. In order to work through this

example, first start the assembler, and enter the following short program that includes a BRK

instruction.

F000R

F000: A9

KRUSADER 6502 BY KEN WESSEN

? N

000 LDA #’A’

001 JSR $FFEF

002 SEC

003 BRK

004 JSR $FFEF

005 RTS

006

?

Assemble it and examine the resulting code.

? A

0300-030B

? D $300

0300 A9 41 LDA #$41

0302 20 EF FF JSR $FFEF

0305 38 SEC

0306 00 BRK

0307 00 BRK

11

0308 20 EF FF JSR $FFEF

030B 60 RTS

...

When this program is run, it should print A, set the carry flag (C), and then drop into the mini-

monitor.

? R $300

A

A-41 X-FF Y-07 S-FD P-21 BC

0308 20 EF FF JSR $FFEF

-

Use the A command to change the value in register A from 41 to 42, confirm the change by checking

the new register display, and then resume the program with the R command. The program will

then print a B, corresponding to the new value in register A, and return to the assembler shell as

normal.

-A42

A-42 X-FF Y-07 S-FD P-21 BC

0308 20 EF FF JSR $FFEF

-R

B

?

Now let’s enter a new program, this time involving a subroutine call.

? N

000 LDA #’A’

001 JSR SUB

002 JSR $FFEF

003 RTS

004

005 SUB .M

006 BRK

007 LDA #’Z’

008 RTS

009

?

Assemble it, examine the resulting code, and run. It will break into the mini-monitor on entry to

the subroutine SUB.

? A

0300

SUB 005 0309-030C

? D $300

12

0300 A9 41 LDA #$41

0302 20 09 03 JSR $0309

0305 20 EF FF JSR $FFEF

0308 60 RTS

0309 00 BRK

030A 00 BRK

030B A9 5A LDA #$5A

030D 60 RTS

...

? R $300

A-41 X-FF Y-07 S-FB P-24 B

030B A9 5A LDA #$5A

-

When in the mini-monitor, unroll the stack by adjusting the value in S, and set the PC to $0305.

-SFD

A-41 X-FF Y-07 S-FD P-20 B

030B A9 5A LDA #$5A

-L05

A-41 X-FF Y-07 S-FD P-20 B

0305 20 EF FF JSR $FFEF

-

Now resume, and A will be printed rather than Z since lines 007 and 008 were never executed.

Since we also adjusted the stack pointer, the RTS on line 003 will return control to the assembler.

-R

A

?

7.2 Tracing Assembled Code

The 6502 version of KRUSADER left just enough space free in the Replica 1 ROM for imple-

menting a single step trace function in the mini-monitor. In the absence of size constraints, this

function can be added to the 65C02 version as well, but it would need a little bit of extra code to

properly handle the BRA instruction and the absolute indirect addressing mode.

To see how the trace function operates, enter the following short program:

? N

000 BRK

001 PHP

002 SEC

003 LDX #$0

004 DEX

13

005 PLP

006 RTS

007

?

Assemble and run, and it will drop into the monitor right away.

? A

0300-0308

? R $300

A-0D X-01 Y-07 S-FD P-30 B

0302 08 PHP

-

Now we can use the T command to step through the code. After one step, the current value of the

status register (P = 30) will be pushed onto the stack, and the stack pointer will decrease by 1.

-T

A-0D X-01 Y-07 S-FC P-30 B

0303 38 SEC

-

As we step through, we can watch the changes in the status flags in response to the execution of

each command. Follow the below to see the carry, zero and negative flags being set.

-T

A-0D X-01 Y-07 S-FC P-31 BC

0304 A2 00 LDX #$00

-T

A-00 X-01 Y-07 S-FC P-33 BZC

0306 CA DEX

-T

A-FF X-01 Y-07 S-FC P-B1 NBC

0307 28 PLP

-

After one last step, the status register will be restored to its earlier value, so the flags will return to

off, and the stack pointer increased by 1. Then, as usual, the R command will continue execution

of the program, and so the RTS command will return control to the assembler shell.

-T

A-FF X-01 Y-07 S-FD P-30 B

0309 60 RTS

-R

?

14

8 Low Level Information

This section presents some low-level information about how KRUSADER works, and is not

required for normal use of the assembler. However, there are many situations where this informa-

tion is quite important for managing source and machine code, and correcting errors. The most

important memory locations are shown in table 9, and discussed in the following sections.

Address Function Zero Page Dependencies

$7100($F000) Assembler entry $F8 – High byte of assembled code storage area

$711C($F01C) Assembler re-entry (shell) $F9 – High byte of local/global table boundary

$FE,$FF – Address of source code storage area

$E9,$EA – Global symbol table address

$EB – Number of global symbols

$730E($F20E) Move memory $50,$51 – Source location

(non-overlapping) $52,$53 – Destination

$54,$55 – Bytes to move

$FE17∗ Mini-monitor entry $F0-$F4 – Register storage (S,P,Y,X and A)

$FE21∗ Mini-monitor re-entry $F5,$F6 – Address of next instruction

(ROM version only) $0F-$11 – Input buffer

$E0-$E8 – Code buffer for trace function

$7BDA($FADA)∗ Disassemble 20 instructions $F5,$F6 – Address to disassemble from

Table 9: Important function entry points and related memory locations. ∗The minimonitor ad-
dresses are $FE0A and $FE1D in the 65C02 version, and the disassembler address is $FAF8.

8.1 Memory Map

Proper operation of the assembler requires a number of things to reside in the machine’s

memory. There is the assembler code itself, the program source code, the assembled code, and

various symbol tables. The default arrangement for both the high RAM and the ROM versions of

KRUSADER are shown in figure 1. The local symbol and forward reference tables take up a fixed

1K of space, with 256 bytes taken up by the locals, and the remainder for the forward references.

The global symbol table grows downward to a maximum of 2K (corresponding to 256 symbols).

The two most important source locations have both been mentioned already, and are $7100($F000)

for initial program entry, and $711C($F01C) for returning to the shell.

KRUSADER also uses a number of zero page locations, but mostly as an input buffer and

during assembly. The only locations that absolutely must be maintained are $F8, $F9, $FE and

$FF. These hold the high byte of the default assembled code storage location, the high byte of the

local/global symbol table boundary, and the low and high bytes of the source code storage location

respectively (See figure 1 for the appropriate values). Additionally, locations $E9, $EA and $EB

are needed if the shell is to have access to the global symbol table for various commands (see table

1), and locations $0F, $10, $11, $E0 to $E8, and $F0 to $F6 are used by the mini-monitor. If you

wish to use all the features of KRUSADER while developing assembly language programs, it is wise

15

KRUSADER code

Forward References
Local Symbols

Global Symbols

Program Source

Program Target

Zero Page

FEFF

F000

7D00
7C00

7400

2000

0300
0100
0000

7FFF

7100

6E00
6D00

6500

1D00

0300
0100
0000

7FFF70FF

High RAM Version ROM Version

Figure 1: Memory map for both the high RAM and the ROM versions of KRUSADER. Note that
the global symbol table starts at the local/global table boundary and grows downwards, whereas
the program source starts at the low address and grows upwards. As mentioned in section 8.1,
the important values are the high byte of the target memory, the high byte of the local/global
symbol table boundary, and the start of the source code storage. For the RAM version, the values
are $03, $6D, $00 and $1D, and for the ROM version they are $03, $7C, $00 and $20. After
initialisation, these values are stored in zero page locations $F8, $F9, $FE and $FF.

to avoid using these locations in your programs. Replica 1 users need to beware of Apple 1 BASIC

because it may overwrite several of these values, so they need to be restored before returning to

the KRUSADER shell7.

8.1.1 Changing Default Memory Locations

For the RAM based version of KRUSADER, the default values can be altered by changing the

values at memory locations $7101, $7105 and $7109 in the assembler code. For the ROM based

version, the default values can only be altered after the program has been run, and the alternative

values must be entered directly into the zero page locations mentioned above, before resuming

KRUSADER at location $F01C8.

7The P command is useful for restoring the default values to these zero page memory locations.
8The P command will overwrite any values entered in this way.

16

8.2 Source Tokenisation Scheme

Any entered source is stored in a tokenised form in order to save space. The tokenisation

employed is quite simple because there was even less space available in the code to implement

it! Three special codes are employed – $01 as a field terminator, $00 as a line terminator, and

$02 00 to indicate a blank line. Labels, arguments and comments are stored as entered with the

field terminator marking their end, and mnemonics and directives are encoded as a single byte.

Program end is indicated by a line starting with $00. This simple scheme results in a reduction of

the source code size by a factor of 2 to 3.

Also provided in the KRUSADER distribution is C source code for a program that can convert

more general source code formats to the required tokenised form, so that they may be uploaded to

the assembler. However, this simple program does not translate different formats for directives or

addressing mode specification, so if any such changes are required, they must be done manually.

Once you have the converted source data, simply launch KRUSADER as normal, enter the monitor

and load in the tokenised data to the source storage memory, and resume. The source will then be

available to KRUSADER as if you had typed it in as normal. However, syntax and formatting errors

in the source may not be well handled since the error handling is designed around the restrictions

placed on source input in the usual manner.

Unfortunately the binary source tokenisation is incompatible between the 6502 and 65C02

versions of the assembler due to differences in the mnemonic indices and directive encoding. The

‘-C’ command line option may be used with the tokeniser program to specify the 65C02 version

binary format.

One useful thing to keep in mind is the N command simply clears the source program from

memory by putting a $00 as the very first byte of the source storage location. So if N is typed

accidentally, the source can be easily restored. To do this manually, simply enter the monitor using

$, and change this initial byte to either $01 if there was no label, or the first byte of the label,

and then resume KRUSADER as normal with 711CR(F01CR). This process is automated by the P

command. You should note however that there is no way to recover source lines deleted with the

X or E commands since the memory is immediately overwritten.

8.3 Moving Memory

If you want to copy a block of memory to another location (if you are backing up source or

machine code via the expansion interface for example), you can make use of one of the memory

moving subroutines inside the assembler as follows. First work out non-overlapping source and

destination addresses – call these srcL, srcH, destL and destH, and then the size of memory to move

– sizeL and sizeH. (You can do this using the M command for source or watching the output of the

A command for assembled code.) Then drop into the monitor using the $ command, and enter:

50: srcL srcH destL destH sizeL sizeH to set the parameters, and 730ER (F20ER) to do the move.

8.4 Testing

KRUSADER comes with a number of sample programs, both in binary and hex dump formats,

and these are useful for verifying its correct operation. The most important sample in this re-

gard is TestSuite.asm, which contains a number of modules for testing the assembler. (For the

17

65C02 version, there is the pair of source files: TestSuiteC.asm for the pure 6502 tests, and

TestSuite65C02.asm for tests of the 65C02 extensions.) The first test of course is that the source

assembles without error, then R MAIN will cause the program to verify its own assembled code and

report any errors. This test suite covers all the 6502 instructions, using all their addressing modes

and various formats for arguments where relevant, as well as each of the available directives. In

addition, both forward referencing and the various kinds of expressions supported by KRUSADER

are tested – both alone and in combination with various addressing modes. A successful run of

this suite of tests is a very good indication that KRUSADER is functioning properly.

Because of the size of the test suite code, it can not be run with the RAM version of KRUSADER

without changing the start address for program source storage as described in section 8.1.1 above

in order to allow enough room for the source code, the assembled code, and the global symbol

table. Specifically, prior to running KRUSADER, the value at address $7101 needs to be changed

to $14, or if KRUSADER is already running, this value of $14 can be loaded directly into the zero

page address $FF.

9 Release History

• KRUSADER 1.0 (May 2006)

– First version released.

– Target CPU is 6502 only.

• KRUSADER 1.1 (July 2006)

– Fully tested version - several bug fixes over version 1.0.

– Comes with code for a thorough automated testing of itself.

– Various enhancements over version 1, most notably:

∗ Forward references can cross module boundaries.

∗ Symbol redefinition is reported as an error.

∗ Comment only lines.

∗ Approximately 20% faster assembly.

– This version was added to the Replica 1 SE ROM.

• KRUSADER 1.2 (August 2006)

– Fixes an obscure bug in version 1.1 that prevented assembly of JMP or JSR commands

targetting page zero.

– Improved syntax checking.

– More compact implementation saves more than 200 bytes over version 1.1.

– Extra space used to implement a mini-monitor for interactive debugging.

– Also available is KRUSADER 65C02, a version that supports 65C02 commands in both

the assembler and disassembler.

– Still fits inside the 3840 free bytes of the Replica 1 ROM!

18

	Introduction
	Sample Session
	Shell Commands
	Source Code
	Labels
	Mnemonics
	Arguments
	Comments
	Expressions
	Directives

	Errors
	65C02 Support
	Additional Mnemonics
	Additional Addressing Modes

	The Mini-Monitor
	Sample Mini-Monitor Session
	Tracing Assembled Code

	Low Level Information
	Memory Map
	Changing Default Memory Locations

	Source Tokenisation Scheme
	Moving Memory
	Testing

	Release History

