OYIE

NEIL BUNGARD

THE SINCLAIR zx8/ (OR TIMEX SINCLAIR
1000) was the first computer to be sold for
less than $100. It was quite a bargain at
that price. Perhaps you’re one of the many
people who bought one so that you (or
your kids) could learn something about
computers. Or perhaps you’ve seen the
computer on sale for a very attractive price
and have only recently considered buying
it just to see what it was like.

If you did buy the machine when it first
became available, you may have outgrown
it by now. After all, it’s not the most prac-
tical computer available. Some of its
problems—including its membrane key-
board and wobbling 16K RAM exten-
sion—can make using the computer
almost a chore.

However, the ZX81 is unbeatable for the
hobbyist who wants to experiment—as
we will do—with computers, computer
interfacing, and Z80 machine language.
And now that the computer is no longer
being produced, you can often find it sell-
ing for as little as $30 (and maybe even
less).

Let us note that for the remainder of the

D0

world.

Interfacing the %

article, we’ll refer to the Timex-Sinclair
1000 as the ZX81, if for no other reason
than because it’s shorter. There is little
difference between the two machines,
save that the /000 has 2K of built-in RAM
as compared to the ZX8/’s 1K.

What we’ll do

In this article, we’ll show you how to
interface the ZX8/ to a clock/calendar in-
tegrated circuit, a temperature indicator, a
light controller, and a heater controller.
You might find use for such devices in
photographic dark rooms, home weather
stations, and home security systems.

In addition to interfacing those special
devices to the ZX8/, hardware and soft-
ware interfacing principles will be cov-
ered in general. That means that you can
make use of the inexpensive ZX8/ for any
particular monitor or control application
that you have in mind—you won’t be lim-
ited to the specific applications that we’ll

discuss. It’s true that we won’t end up

with something as elegant as the home-
control computer that was presented in
Radio-Electronics in April through
June. But we will have something to quiet
the people who scoff at the ZX8/ and call
it a useless machine.

Put your “lowly” Timex Sinclair 1000 or ZX81
computer to work by interfacing it to the real

Using a computer for monitoring and
control has become much simpler than it
once was because of the number of inter-
esting microprocessor-compatible inte-
grated-circuits now available. For exam-
ple, we’ll be using OKI's MSM5832
clock/calendar integrated-circuit (IC).

Where to begin

You will, of course, need a ZX8/ com-
puter and a TV. You should also have a
standard cassette-tape player so that you
can store your programs. You might also
consider building the 8K non-volatile
RAM accessory that was described in the
July and August 1983 issues of Radio-
Electronics: It makes storing and using
machine code much more convenient.

On the back of the ZX8/ is a card-edge
with 44 “fingers.” That gives you access
to (for all practical purposes) all of the
pins of the Z80 microprocessor. Figure |
shows the pinout of the card edge, while
the signals and functions are listed in Tab-
le 1. When you interface to the port, you
are essentially interfacing directly to the
730 CPU. To get the most out of the
project, you might consider obtaining a
7380 technical manual and other reference
material relating to the Z80.

7861 A1NC

(4]
~

RADIO-ELECTRONICS

[4)]
-]

_COMPONENT [y +5V UNDERSIDE

30 RAMCS - | +9V

* KEYWAY

D@ q+

b }GRBUND

D2 CLOCK ¢
D6 Ap
D5 - F Al
D3 A2
D4 HF A3
INT Al5
N Al4
HALT 1| A3
MREQ A12
__10RQ Al
RD ad
WR A9
 BUSAK A8
 WAIT A7
BUSRQ AB
RESET A5
Ml Al

FIG. 1—THE CARD-EDGE PINOUT of the ZX87's
expansion port.

sequently doing any type of memory-
mapped input/output (I/O) is practically
impossible. That leaves you with only the
Z380’s 1N and out instructions for getting
peripheral data in and out of the micro-
computer. Unfortunately, the ZX8/ does
not include N and ouT commands with its
BASIC language instructions. That
means that all I/O will have to be accom-
plished from machine-language sub-
routines that will be incorporated within
the BASIC program you write. For-
tunately the ZX8/’s BASIC language does
supply you that capability with the
“USR” command.

When using the iN and ouT instructions
with the ZX8/, some strange things occur
in two specific situations: 1) if you use the
out machine language instruction with an
odd device code (in other words, if
A0=1), the ZX8/ monitor system will
crash. 2) Any input using the IN machine
language instruction and an even device
code ignores the top two data bits (D6 and
D7). As long as those characteristics (that

'fABLE 1—WMEX/SINGLA§R EXPANSION PORT

Description _ Signal Function
Address bus _AG - A15 Outputs memory-and |/O device addresses
Data bus Do -D7 Transmits bidirectional data into/out of CPU
. ‘ MBEQ Identifies any memory-access in progress
10RQ Identifies any /O operation in progress
RD. Indicates that the CPU wants to read data

_ Systemcontrol = WR

Indicates that the CPU wants to output (write) data

Ml Identifies the op-code fetch cycle of instruction

_ Also used withiORQ fo acknowledge interrupt

~ RFSH Synchronizes dynamic-memory refresh
Systemclock & 3.25 MHz clock (output)
‘ ‘ BESET Resets CPU when pulled low
" INT Interrupt request input
CPU control . NMI _Interrupt request input; cannot be disabled
~ WAIT Initiates wait state in machine cycle
. HAIT Indicates CPU has executed a HALT instruction
Bus control BUSRQ Request to CPU for control
, . BUSAK Acknowledgement of release of control by CPU
RAM/ROM select RAMCS If pulled high will disable computers on board RAM
~ . ROMCS It pulled high will disable computer's ROM
Power ‘ t9v Unregulated
_ +5V Regulated
GROUND ,

Interfacing principles

The procedures for interfacing to a mi-
crocomputer are relatively straightfor-
ward. Once you learn the techniques,
you'll be able to apply what you learn here
to other computers. However, the ZX8/
has some unique idiosyncrasies that can
give you a real headache unless you are
forewarned. We will list those idio-
syncrasies now for those that have done
some microprocessor interfacing. If you
don’t understand them now, don’t wor-
ry—we’ll explain later them in more de-
tail when we review general interfacing
principles.

The first thing that makes interfacing
with the ZX8I not as straightforward as
interfacing with just the Z80 CPU is that
the ZX8I does not use absolute address
decoding in its memory scheme. Con-

are unique to the ZX8/) are known, they
can be circumvented. They will not be a
problem for our applications. If one is not
aware of those characteristics, however,
they can be maddening and take weeks to
figure out.

Interfacing basics

Interfacing to a microcomputer can be
analogous to tossing a baseball. If you try
to catch the ball before it is within your
reach—or after it has gone past—you will
miss it. Data moving in and out of the
microprocessor works much the same
way. When the microprocessor wishes to
input or output data, it always does three
operations:
® |t places the address of the device with
which it wishes to communicate on the
eight lower bits of the address bus.

® [t places the data it wishes to send to (or
receive from) the external device on the
data bus.

@ After the address and data buses have
had time to settle, it sends a control pulse
to initiate the data transfer.

The microprocessor does those three
operations every time it wishes to commu-
nicate. But it is your responsibility to per-
form the following tasks in response:
® You must decode the address from the
address bus and signal the device that its
particular address is being sent.
® You must be certain that the communi-
cation lines of the device are properly
connected to the data bus, and if it is an
input device, its communication lines
must be disabled (set to a high-imped-
ance) until it receives an input-control
pulse from the microcomputer.
® When interfacing to the Z80 CPU, you
must decode three control signals to gen-
erate the input and output control pulses.
Once decoded, you must send the appro-
priate control pulse to the device to initiate
data transfer.

The interface circuit

The schematic of the interface circuit is
shown in Fig. 2. Let’s take a look at it to
see how the principles that we just men-
tioned apply. Two sections of a quad or
gate, 1Cl-a and ICI-b, receive three con-
trol signals from the microcomputer on its
inputs. It decodes those three signals,
such that when TORQ and WR are true (low)
an OUT control pulse is generated. When
TORQ and RD are true (low) an TN control
pulse is generated. Those input- and out-
put-control pulses initiate the data trans-
fers. Each of the control pulses goes to a
741.S138 3-to-8-line decoder (IC3 and
IC4). Figure 3 shows how the 74LS138
operates: When E1 and £z are high (logic 1)
the logic levels of inputs A, B, and e do not
matter. However, if ET and B2 are low
(which is the condition when either IN or
OUT is true), the inputs A, B, and c are
decoded such that one of the outputs on
the 74LS138 goes low. As shown in the
table in Fig. 3, the output that goes low
depends on the code at the inputs A, B,
and c (pins 1, 2, and 3).

Referring back to the schematic in Fig.
2, you will notice that the 74L.S138 inputs
are connected to A2, a3 and a4 of the ZX8/
address bus. This means that—assuming
that ao. A1 A5, a6 and A7 are all logic
zeros—the device codes as, shown in Tab-
le 2, can be generated by the ZX8/ and
will be decoded by the 74LS138.

So with two or gates and two
741.S138’s you have the capability of gen-
erating eight output- and eight input-de-
vice code pulses. In other words, you have
the capability of sending an output to
eight separate devices from the ZX8/ and
receiving an input from eight separate de-
vices. In the interface circuit in Fig. 2,
three of the output-device code pulses
(IC4, pins 13, 14 and 15) and one of the

+5V

, 16
LT 15741504

6
E’I 743?1130 - ”
5]
XTAL-1

+hV
%.832
10RO
RD
A4
A3
A2

D3

1/4 781832

FIG. 2—INTERFACE-CIRCUIT SCHEMATIC. The connections to the computer include three address
lines, three control lines, and four data lines. Note that + 5 volts can also be taken from the computer.

7415138

OUTPUTS
a

- OUTPUTS
E\ANDE, CBA 12345678
1 XXX 1011100
0 000 01111111
0 001 10111111
0 010 11811111
0 01l 11014
0 1800 11818110
0 101 113100
0 118 11111101
0 111 11114010

FIG. 3—THE 74LS138 3-to-8-line decoder/multi-
plexer. By using three address lines and two
control lines, we can generate 8 input- and 8
output-device codes.

input-device code pulses (IC3 pin 15) are
used. The remaining input and output de-
vice code pulses will be used in future
interface projects.

Once the device-code pulses are gener-
ated via the input and output 74LS138’s,
they are sent to the clock/calendar circuit
to get information into and out of the
MSM35832 clock/calendar IC.

The remainder of the circuit in Fig. 2 is
specifically for interfacing the MSM5832
to the ZX8I. For example, when output-
device code pulse O0H is generated (at
IC4, pin 15), it goes to pin 4 of ICS, a

A4 A3 A2 Device Code (Hex)
e 9@ a2 {2 .
2 5 i

% 1 @8
& 1 . e
. e 8 18
i B8 4 a4
1 B8 18

1 1 .

~ Note: A7, A6, A5, A1, and AQ = 0

74L.S74 flip-flop. (Note: A hexidecimal
number is indicated by a capital “H” fol-
lowing the digits.) When the flip-flop re-
ceives a low-going pulse on pin 4, it sets
its output (pin 5)—and thus the cs and
HOLD inputs of the MSM5832 clock/cal-
endar IC—to a logic 1. A logic 1 on those
inputs selects the MSM5832 and holds all
of its internal registers stable during the
input or output operation.

In addition to going to pin 4 of the
74L.S74, the device-code pulse is inverted
and sent to pins 4 and 13 of a IC7, a
74LS75 4-bit latch. When the 74LS75
receives a high-going pulse on pins 4 and
13, it catches the data present on its inputs
(pins 2, 3, 6, and 7). Those input pins are
connected (through a buffer) to the four
lower-order bits of the data bus of the
ZX81.

The information transferred from the
ZX81 to the latch is the code or address for
the MSM5832 clock/calendar register to
which it wishes to send or receive infor-
mation. A listing of the register options
and their codes are shown in Table 3.
Once the register code is sent to the
74LS75, it will remain present on its out-
puts until a new register code is sent.

PARTS LIST

11741 882 quad or gate
162741 504 hex inverter ~
IC3,1C4—74| S138 3-t0-8-line decoder/
multiplexer
1C5-—741 874 dual D-type flip-flop
1C6-—MSM5832 microprocessor real-
time clock/calendar
1C7- 741 875 4-bit bistable latch
1C8-—741 5373 octal D-type latch
1C9--741 S11 triple 3-input anp gate
1610—7415245 octal bus transceiver
XTAL1--32768 kHz

 Miscellaneous: Card-edge connector for
ZX81, wire-wrap sockets, universal plug-
board, etc. ~

The following are available from Active
. Electronics, PO Box 8000, West-

borough, MA 01581 (1-800-343-0874):
MSM5832 clock/calendar IC, $12.95;
32.7680 kHz crystal, $3.45. Add $3.75
for postage, handling, and insurance.

Once the register code is sent, the
MSM35832 is ready for communication
and data can be sent to the selected regis-
ter by generating an output-device code
pulse 08H (pin 13, IC4). You may receive
information from the selected register by
generating an input-device code pulse
OO0H (pin 15, IC3). When you have com-
pleted your input or output operations, an
output-device code pulse 04H (pin 14,
IC4) is generated to reset the 74L.S75 flip-
flop output back to a logic zero. That
deselects the MSM35832 and allows it to
resume normal timing operations—which
brings us to an important point: If the
MSM5832 is kept on hold (cs and HOLD
set to logic 1) for more than 1 second, its
normal timing will be interrupted and you
will lose a second for each second that
those pins are held to a logic 1.

Two IC’s in the interface, IC8 and ICI0,
have not been discussed, yet they are im-
portant. Those two IC’s are bus buffers—
they protect the ZX8/ from damage result-
ing from wiring errors in the interface
circuit. For example, IC8 (74LS373)
buffers the address lines and is unidirec-
tional, while IC10 (74LS245) buffers the
data-bus lines and is bidirectional. The
74L.S245 allows information to flow from
the ZX81 data bus to the interface circuit
on all ouT instructions. But it only allows
information to flow from the interface cir-
cuit to the ZX8/ on certain N instructions.
Those I instructions are determined by
the 1N address lines A2 through a4, and a
decoder circuit constructed of IC9
(74LS11) and ICl-c (74LS32).

If any address line is a logic 0 and an IN
is generated, the 74L.S245 allows infor-
mation to flow from the interface circuit to
the ZX8/ data bus. That means that if the
ZX8!1 is trying to generate an IN
instruction with A2, A3, and A4 all logic
I's, an input will not be accomplished.

861 A1Nr

[4)]
©

RADIO-ELECTRONICS

[=2]
o

TABLE 3—MSM5832 REGISTERS

Address Inputs | Internal
A3 A2 A1 AQ |Counter

0 0 © 0 |Seconds

0 @ © 1 |Tensofseconds

0 0 1 0 |Minutes

@ 0 1 1 i Tensof minutes

0 1 0 B |Hous

© 1 08 1 |Tensofhours
2 1 1 0 |Dayofweek

2 1 1 1 |Days

1 @ 8 0 |Tensofdays

1 @ @ 1 |Months

1 @ 1 @ |Tensofmonths

i 8 1 1 \vyears

1 1 0 0 |Tensofyears

Data 11O
D3 D2 D1 DO

*Notes

Seconds and tens of
seconds are reset to
zero when write
instruction is
executed with
address selection

0-9
0-1/0-2 |D2=1 for PM; D2=0

for AM
D3 =1 for 24-hour
format
D3 =0 for 12-hour
format

0-6

0-9

0-3 D2 =1 for 29 days in
Feb
D2=0 for 28 days in
Feb

-9

01

-9 X Indicates data can

0-9 be either 1 or @

BUBLEBUBRB R YRR

FIG.4—THE INTERFACE BOARD. Wire wrapping is probably the easiest way to construct the interface.
Be sure to leave space between the connector and the lowest IC socket so you can plug the board into

the computer.

Even though the 74L.S138 can decode and
generate a device code pulse for that ad-
dress when those three address lines are
all logic 1's, the 741.S245 will not let the
information pass. Keep that in mind when
interfacing with the circuit.

Building the interface

To wire anything to the card-edge port
of the ZX81, you’ll need a 44-pin card-
edge connector. However, you cannot use
a standard 44-pin connector. If you look

closely at the card-edge fingers, you will

notice that, in addition to the 44 fingers,
there is a keyway. That keyway takes up
exactly one pin location—it’s used so that
you won’t plug anything in backward. It
means that the connector you need is actu-
ally a 46-pin type. The problem is that
standard connectors are available in 44-

and 50-pin configurations but are not

available with 46 pins.

You can do one of two things. You can
buy a special connector that will fit the
ZX81. (Such a connector is not too easy to
find, but they are available from the *“‘cot-

tage industry” that has sprung up around
the ZX81.) Your other choice is to buy a
standard 50-pin connector and cut it to
size. The 50-pin card-edge should have
0.100 by 0.200 inch spacings. It is avail-
able from many suppliers, in many dif-
ferent configurations. You’ll probably
want to buy the wire-wrap type because
wire wrapping is easy to use and is easy to
modify. But if you’re not a wire-wrap fan,
feel free to use some other construction
method. Whatever method you use, you
should make some note of the connector
polarity. Either insert a “‘key” in the key-
way or simply label the connector.

Once all the parts for the circuit have
been acquired, the card-edge connector
and wire-wrap sockets can be place on
universal plugboard as shown in Fig. 4.
Notice that there is approximately one
inch between the top of the card-edge
connector and the bottom of the lowest IC
socket. If you intend to leave your ZX8! in
its case, be sure to do the same. Otherwise
you won’t be able to plug the expansion
board into the computer. You will also
notice that a a 40-pin IC socket has been
placed on the plugboard, even though
none of the IC’s in the circuit requires it.
That 40-pin socket has not been placed on
the board to receive an integrated circuit;
its purpose is for breadboarding. As new
circuits are developed to interface to the
ZX8I they can be developed on a sol-
derless breadboard and tested. (The photo
on the title page of this article shows the
clock/calendar circuit under construction
before any IC sockets were placed on the
plugboard.) When your circuits are work-
ing properly, they can be transferred to the
plugboard in wire-wrap form. When you
need a signal from the ZX8/ all you have to
do is bring the signal to the back of the 40-
pin IC socket by wire wrapping it from the
card-edge connector. Then you can plug
one end of a wire into the corresponding
hole of the socket, and plug the other end
of the wire into the solderless bread-
board—very handy!

Another trick that you may find useful
when wire wrapping is to use a small
amount of quick-setting epoxy glue on the
backs of the IC sockets before mounting
them. That ensures a sturdy mount which
makes wire wrapping easier. Labeling
each IC and marking the number one pin
of each IC makes the task of wire wrap-
ping much easier; and in addition this aids
in reducing wiring errors. Plastic slip-on
pin identifiers are recommended.

Now that we have the basic hardware
design completed, we can turn to what is
often the most time-consuming and least
understood aspect of any microprocessor-
based project: the software—the program
that makes your interface do what it has
been designed to do. Next month, after we
look at the software, we’ll be able to put
the interface to work as a temperature sen-
sor, a security system, and more. R-E

NEIL BUNGARD

P t 2 LAST MONTH, IN THE
a r first part of this article,
we took a look at hardware that allows us
to connect external devices to the: Sinclair
ZX8I (or Timex-Sinclair 1000). We also
looked at some basic principles of com-
puter interfacing and described some of
the ZX81’s interfacing idiosyncrasies.

We used the interface circuit to connect
a clock/calendar IC (OKI’s MSM5382) to
the ZX81. But we couldn’t do anything
with the resulting circuit—we never dis-
cussed the software that is required to op-
erate the it. This month, we’ll start with a
review of some general software princi-
ples and take a look at machine-language
programming.

Machine language vs. BASIC

Why do we have to discuss machine-
language programming? You might won-
der why you can’t use BASIC—a lan-
guage that you're so familiar with and that
is so easy to use—to control the interface.
(If you’re not familiar with BASIC and
need more information, your ZX8/ user’s
manual has a good explanation of most
instructions, and many examples of how

D
O

i

to use them.) Actually, you will use
BASIC to control the interface. But, be-
cause the Sinclair BASIC has no IN or
OUT commands, you have to use machine
language as well.

When you program in machine lan-
guage, you are programming in the lan-
guage that the Z80 microprocessor
understands. BASIC simplifies program-
ming by allowing many machine-lan-
guage instructions to be represented by a
single command. (When you program in
BASIC, the ZX8/ must break each com-
mand into machine-language instructions
before can execute it.) In addition,
BASIC was written to be more under-
standable and easier to learn by the inex-
perienced programmer. Its word structure
is similar to the English language, and the
command-words more explicitly describe
the operation that the command repre-
sents.

If you program in BASIC, you do not
have to be familiar with the architecture of
the microprocessor (CPU). However,
when programming in machine-language
the architecture of the CPU becomes in-
creasingly more important: You must be
more aware of how the microcomputer
system is configured. That’s because you

This month, we'll look at what is often the
least-understood aspect of computer
interfacing—the software—as we continue to
show how to interface the ZX81 or Timex
Sinclair 1000 to the “real world.”

Interfacing the ZX 81

" become responsible for all of the “house-

keeping” that BASIC takes care of auto-
matically. If you don’t completely
understand that, don’t worry—it will be-
come clear as we study the machine-lan-
guage mode of programming.

As mentioned earlier, the reason we
must program in machine language is be-
cause no provisions were made in Sin-
clair’s BASIC that allow us to output data
to (or input data from) any external de-
vices. There’s another reason: Machine
language executes many times faster than
BASIC. That speed advantage, as you’ll
soon see, is a necessity in many interface
applications.

Machine language and the ZX81

To begin programming in machine lan-
guage, we must first consider the ZX8!
memory configuration. The ZX8/ system-
control software, and a number of stacks
and registers occupy the first 16,512 mem-
ory locations of the computer’s memory
space. (Actually, it only occupies the first
8K, but “repeats itself”” in the next 8K.)
That means that when you enter a program
into the ZX8! it begins storing your pro-
gram at memory location 16513. For ZX8!
owners with 1K of memory, your user

861 LSNOHNY

[4)]
w

RADIO-ELECTRONICS

(3]
F=y

memory extends to 17408, giving you
only 895 memory locations into which
vou can store program instructions.

When you program in BASIC, the
ZX8] takes care of storing the instructions
for you, and only bothers you with memo-
ry information (error-message 4) if you
run out of space. But when programming
in machine language, you are responsible
for reserving memory locations for your
program. Each instruction must be placed
into a specific memory location within the
reserved space.

Reserving space for machine code

One way to reserve space for the ma-
chine-language instructions or machine
code is to set up a REM (REMark) state-
ment. The REM statement takes the fol-
lowing form:

1 REM 0123456789
Anything after the REM is not acted on by
the computer—it is treated simply as a
remark. However, the remark does occupy
space in memory. For example, for the
statement just listed, ten memory loca-
tions are occupied by the numbers from 0
to 9. Those ten locations are a good place
to put the machine code. (Of course, the
numbers 0 to 9 are not the machine
code—they simply act as place holders
until you enter the code.)

The reason we want to reserve the space
in line number 1 is because we know the
address where the first line of the program
starts: The first character after the REM
occupies location 16514. So the O in the
REM statement is at location 16514, and
the number 9 resides in memory location
16523. If your machine-code subroutine
is longer than 10 bytes and you need more
space, you can simply place more charac-
ters in the REM statement. If you want to
know the ending address of your reserved
space just add the number of characters
after the REM statement to 16513. Once
you have reserved sufficient space for the
machine code you must then place the
desired machine code into the reserved
space.

We should point out that there are alter-
nate ways to store machine code in the
ZX81. One of the most convenient we’ve
seen is to store it in RAM that occupies
the addresses from 8K—-16K. (That area is
transparent to the ZX8/’s operating sys-
tem and is not affected by NEW or LOAD
commands.) A circuit that allows you to
do that was described in the July and Au-
gust 1983 issues of Radio-Electronics.

Binary, decimal, and hexadecimal

If you're going to do any machine-lan-
guage programming, you’re going to have
to get used to working in different number
bases. The ZX8! understands numbers
only if you enter them in decimal (base 10)
form. In other words, when you POKE
anything into the ZX8/’s memory, the ad-
dress and data must be decimal numbers.

If you’ve never done any machine-lan-
guage programming, you might think that
using decimal numbers is convenient. It
isn’t. Usually, machine code is listed in
hexadecimal (base 16) form. That’s be-
cause it lets us represent one byte using
just two symbols.

However, because everyone does not
follow the same conventions, it is neces-
sary to be able to convert from one
number base to another. We will want to
be able to convert to and from binary,
decimal, and hexadecimal.

In this article, binary numbers will be
listed with a capital “B” following the
number while hexadecimal numbers will
be followed by a capital “H.” Decimal
numbers will be written without any in-
dication.

Before we can explain how to convert
from one base to another, lets look at our
decimal (base 10) system to see how it
works. We all remember learning about
the “ones’ place,” the “tens’ place,” the
“hundreds’ place,” and so on. Each place
is worth ten times the place to its right—as
you move to the left, the value of each
place increases by a factor of ten.

It’s essentially the same when you work
in other number bases—just the numbers
change. For example, in the binary sys-
tem, the value of each place increases by a
factor of 2 as you move to the left. In the
hexadecimal system, the value of each
place increases by a factor of 16 as you
move to the left. A look at Fig. 5 should
clear up any questions you have—except,
perhaps, one. Since the value of the “ones
place” in hexadecimal doesn’t change un-
til after it reaches 15, you might wonder
how you represent the numbers from
10-15 in hex while still using only one
digit. It’s rather simple: The numbers
1015 are represented by the letters A—F.
Here’s a problem to see if you’re follow-
ing what we’re talking about: What is
D3H in decimal form? D3H =
(DX16)+(3%x1) = (13Xx16)+(3)
=208+3 = 2II.

If you want to convert a hexadecimal
formatted instruction to a decimal form,
you have a few choices. First, you can
follow Fig. 5 and the example above and
multiply each number by its place value.
But if you don’t like multiplying things by
16, there’s another way: Convert the hex-
adecimal form to binary and then convert

the binary to decimal. It’s very easy to
convert hex to binary—it’s a special case
where you can simply take each number
(or place) in hex and replace it with the
corresponding number in binary. (See
Table 4). For example, D=1101B and
3=0011B. Therefore, D3H =
11010011B.

You can convert the binary number to
decimal by multiplying each digit by its
place value. For example, the decimal val-
ue for 11010011B is (I X1)+(1X2)
+(1X16)+(1x 64)+ (1x128) = 211.

Which of the two methods is easier? It
all depends on your point of view.
However, we’re sure that you’ll agree that
the following is the easiest method of all:
Use the table shown in Fig. 6. You can use
it to convert from hex to decimal and from
decimal to hex. Unfortunately, it works
only for numbers between 0 and 255.

Whatever method you choose, we
would advise you to become comfortable
with base conversions—when you do a lot
of machine-code programming, you’ll do
a lot of base conversions.

Entering machine code

We are now ready to begin storing ma-
chine-language instructions into the
memory space you have previously re-
served with the REM statement. How do
you replace the contents of the REM state-
ment with the machine code? You use
BASIC! Specifically, the POKE instruc-
tion, which takes the form:

POKE address, data
where the address is the memory location

PLACE /o7 ¥
VALUE $ o
= ~ S § S N § ‘}'ao '&:' ~
%r/ NI/ \// Ql/ %1/ ‘\/I’ \I/ Q// ” . \,, v
oy S/S/S/9 S/3/8/8
1 11011 1111011 1111011
DECIMAL VALUE: (1X1000) + (1 x 100) +(0x 10) +(1x 1) =1101

(1x8) +(1x4)+(0x2)+(1x1)=13

(1 X 4096) + (1 X 256) + (0 x 16) + (1 X 1) = 4369

FIG. 5—CONVERTING FROM ONE BASE TO ANOTHER does not have to be difficult or confusing. Just
remember that all number bases operate the same as the decimal system you’re used to.

g.. 1 2 23 4 5 6 7

8§ 8 A B € B E F

18 17 18 19 90 21 39 93
42 33 34 35 36 37 38 39
48 49 50 51 52 h3 b4 BB
64 65 66 67 68 69 70 71
80 81 82 8 84 85 86 81
96 97 98 93 100 101 102 103
| 112 113 114 115 116 117 118 119
129 130 131 132 133 134 135
144 145 146 147 148 149 150 151
160 161 162 163 164 165 166 167
176 177 178 179 180 181 182 183
192 193 194 195 196 197 198 199
208 209 210 211 212 213 214 215
224 225 226 227 228 229 230 231
240 241 242 243 244 245 246 247

MMOO @ > o0 N0 T & wWr — o
—
N
o

24 25 26 271 28 29 30 31
40 41 42 43 44 45 46 47
56 57 58 59 60 61 62 63
72 73 74 15 76 71 718 73
88 89 90 91 97 93 94 485
104 105 106 107 108 109 110 111
120 121 122 123 124 125 126 127
136 137 138 139 140 141 142 143
152 153 154 155 156 157 158 158
168 169 170 171 172 173 174 115
184 185 186 187 188 189 190 191
200 201 202 203 204 205 206 207
216 217 218 219 220 221 222 223
232 233 234 235 236 237 238 239
248 249 250 251 252 253 254 255

MMUOUO@PE®WomNDo HwWN 2o

g 1 2 3 41 b b I

8 9§ A B £ 0§ E P

FIG. 6—THE EASY WAY TO CONVERT FROM HEX TO DECIMAL. All decimal values frdm 0;255 (;an'be

represented by a two-digit hex number.

where the instruction is to be placed and
the data is the machine-language instruc-
tion. In order for the ZX8/ to understand
the POKE command, both the address
and the instruction must (unfortunately)
be in decimal form. If you want to place an
instruction into a single memory location,
a POKE instruction is probably the easiest
way to do it. But in a situation where you
want to store many instructions (the usual
case), POKE-ing each value can be a
tiresome (and error-prone) process.

One way to get around some of the
tedium is to write a small loader program
that sets the starting address of the ma-
chine code, POKEs the first instruction,
and advances to the next memory storage
location automatically. While we’re at it,
we’ll include a couple of lines in the pro-
gram to convert hex to decimal so that we
can enter instructions in a hexadecimal
format.

For the following programs, we’ll as-
sume that your ZX8/ has only 1K of mem-
ory, which is standard with the ZX8/. (The
Timex-Sinclair /000 came equipped with
2K.) Unfortunately, all the programs
we’ll need to operate the clock/calendar
interface cannot be stored in 1K of memo-
ry at the same time. Therefore, we’ll have
to write individual programs to perform
specific tasks and then erase the programs
when we have finished to make room for
the next program needed. As you can see,
cassette-tape storage is almost essential:
Once the programs are written, they can
be stored on tape and loaded into the ZX8!
via the tape player as they are needed. (Of
course, if you have more memory than the
standard 1K, you’ll be able to write and
save all of the programs in one shot.
What? You can’t plug in your RAM-pack
when you have the interface board con-
nected? We’ll show you how to get around
that problem next month.

Clear the ZX81 with the NEW com-
mand and enter the program shown in
Table 5. If you have a cassette recorder,

SAVE the program.

The first line of the program reserves 17
memory addresses for storing a machine-
language program. Line 10 sets the varia-
ble “X’’ to the value of the first address of
the machine code storage area (16514)
which is now occupied by the first number
“1” in the REM statement. Line 40 con-
verts your hexadecimal input to decimal
and pokes it into memory.

The program takes your first input and
POKEs it into location 16514. Your fol-
lowing inputs are POKEd into successive
memory addresses until an “”’S” is enter-
ed. When the machine-language program
has been completely entered, input an S,
and the program will end. Now you’re
ready to give the program a try. RUN it,
and enter the machine code shown in Tab-
le 6.

Loading the registers

The left column is the machine code
that is to be entered. The order of entering
the code is: 06, 40, OE, 91, 0A, etc. (When

ts—at a time, followed by hitting the EN-
TER key. Don’t, of course, enter the
commas.) The right-hand-column con-
tains the mnemonics that represents the
780 machine-language instructions. Un-
fortunately, we cannot go into a detailed
description of the mnemonics at this time.
(A full explanation of the Z80 instruction
set is contained in the Z80 Software Man-
ual from Zilog Corporation, and in a
number of Z80-programming books on

TABLE 5—MACHINE-CODE ENTRY

1 REM 123456789@1234567
16 LETX=16514 =
15 PRINT “INPUT DATA”
20 INPUT AS
30 IF A =S’ THEN STOP
40 POKE X, TB*CODE A$+CODE
 AS(2)- 4786 .
50 LET X=X+1
60 GOTO 30

the market.)

After all of the machine code has been
entered, enter an “‘S.” Look at a LISTing
of the BASIC program. In the REM state-
ment, you’ll notice that the first 15 num-
bers have been replaced with strange
looking characters. Those characters rep-
resent the machine-language program
that has just been entered. The reason that
you do not see the machine code as it was
entered is because the ZX8/ stores its
*“character set representation” of the hex-
adecimal numbers that were entered, and
not the numbers themselves. A complete
listing of the ZX8I character set and the
associated codes can be found in “Appen-
dix A” of the ZX8/ User’s Manual.

Now that you have' the machine-lan-
guage program in memory, you will no
longer need the machine-code-entry pro-
gram. Erase everything but the REM
statement that contains the machine code
(line 1) and enter the BASIC program in
Table 7.

. TABLE 7-—REG¥$TER LGAD{:&G

10 FORI=0 TD 12 .
B PRINTI
25 PRINT mpm VALU& FOR REGIS-
. TERL
30 INPUTA

40 POKE 165291

50 POKE 16530,A

60 LET C=USR 16514

70 NEXT |

80 PRINT “END OF LGAD”
soswOP

That BASIC program, along w1th the
machine-language program previously
entered, work together to load the
MSMS5832 clock/calendar IC with its ini-
tial settings. The BASIC program asks for
an input of the value to be stored in each of
the 12 registers of the MSM5832. (Table 8
defines the registers and their allowable
data ranges.) The BASIC program then
calls the machine-language routine (line
60) which does the actual loading of the
values.

Let us follow the operation of these
programs line-by-line as they load a regis-
ter in the MSM5832: Line 10 sets the first
register to be loaded to register O (seconds
register). Line 20 will print the register
number and line prompt you to enter the
value you want stored there.

After you enter a value, the ZX8! stores
the register code in memory location
16529 (4091H) and stores the register val-

o

¥861 1SNONV

()]
a

RADIO-ELECTRONICS

a
»

TABLE 8—MSM5832 REGISTERS

Register Contents

0 SECONDS
1 TENS OF SECONDS
2 MINUTES
3 TENS OF MINUTES
4 HOURS
5 TENS OF HOURS
6 DAY OF WEEK
7 DAYS
8 TENS OF DAYS -
9 MONTHS

10 TENS OF MONTHS

11 YEARS

12 TENS OF YEARS

Notes:

% Indicates that data can be either | or @

DATA I/0

x| x| x8

4><><i><|><’

Allowable output range
(decimal)
2-9
25
@9
0-5
2-9
0-1/0-2+
2-6
0-9
2-3
-9
g1
2-9
g9

D2 Di

X X | X B 1 X X %
3 x| X e X X X X X X X X
KX XX KX XXXX XX XD

* D3 = 1 for 24-hour format. D3 = 0 for 12-hour format

** D2 = {for PM. D2 = @ for AM
+ Depends on D3

7t D2 = 1 for 29 days in Feb. D2 = 0 for 28 days in Feb.

ue in location 16530 (4092H). Line 60
calls the machine-language subroutine.

The first thing the subroutine does is
take the register code out of memory loca-
tion 16529 (4091H) and send it to the
MSM5832 via OUT device-code pulse
00H. (Recall from Part 1 of this series that
that device code selects the MSM5832 for
inputting and stores the register code in
the 74LS75.) The machine-language rou-
tine then retrieves the value to be placed
into the selected register from memory
location 16530 (4092H). The ZX8I then
sends the register value to the MSM5832
via the OUT device-code 08H. An OUT
device-code 04H is then generated to de-
select the MSMS5832 so that it can resume
normal timing operation. Program execu-
tion returns to the BASIC program and
the remaining function registers are filled.
When the last register is set, the ZX8I
prints “‘end of load™ and the program ex-
ecution stops.

Table 9 is an example of the values that
must be loaded to initially set the
MSM5832 to: Sunday, April 18, 1983,
1:25:00 PM. At completion of the above
program. the MSM5832 clock/calendar

TABLE 9
INITIAL REGISTER VALUES FOR
SUNDAY, AUGUST 19, 1984

Register code Register value

9] Q
1 a
2 5
3 2
4 1
5 4
6 6
7 9
8 1
9 8
10 @
11 4
12 8

IC will be loaded with initial values for
time (*hours, minutes, seconds), date
(year, month, day), and day of the week.

Reading the register contents
Great—the MSMS5832 knows the time
and date, but we don’t. A short program,
however, will allow us to retrieve the time
and date information from the MSM5832.
To make room for the new retrieval pro-

-gram, clear the ZX8] with the NEW com-

mand. That will erase both the machine-
language and the BASIC programs used
to load the MSM5839 with initial values.
Since a new machine-language routine is
to be used, the BASIC program which
loads hexadecimal machine code must be
re-entered. If you SAVEd the machine
code entry program on cassette tape the
first time you used it, it can be LOADed
from tape. If not, you will have to type it
again. (You can waste a lot of time that
way, can’t you?) After the hexadecimal
machine-code entry program has been en-
tered, you will need to reserve 39 memory
locations for the machine-language pro-
gram which retrieves the date and time
values from the MSM5832. That is done
via the REM statement:

1 REM (40 characters).

Type in the REM statement and load the
machine-language program in Table 10,
using the same method as you did earlier.

With the machine-language program in
place, erase the entry program (lines 10
through 80) and enter the BASIC program
in Table 11.

The BASIC program and machine-lan-
guage routines work together to retrieve
time and date information from the
MSM5832. As the values of the 13 regis-
ters in the MSM5832 are retrieved, they
are placed in memory locations 16540
through 16552. Table 6 lists the addresses
and contents. (Those memory locations
were reserved earlier by the REM state-

_ TABLE 10-—REG!STER RETRiE\IAL-’ f

06 40 LD BAO

GEes ipes
0A _ ipAEg
D300 OUTOOA
SAGAMD mmmg;\}

47 _ ihBRA
3A9B40 LDA(409B)
g lpchA

DB 00 INAOD

EGOF ANDOF

o _ ipBo), A

D3gd | OUT@EA A

o B

TA&LE 11-—-REGISTER RETR!EV&L

800 LET c=-0
BB LETD- 156 .
820 FORI=0TO12

830 POKE 16537,C
840 POKE 16538,64
850 POKE 16539D

860 LET A=USR 165'{4

B0 LETC-C+1

880 LETD=D+1

890 NEXT |

900 STOP

ment with 40 characters.) Let S follow the
program through one complete register
retrieval.

In lines 800 and 810, the initial register
code (0 for seconds) and initial register
content storage location are defined. In
line 830, the initial register code is stored
in location 16537 (409AH). In lines 840
and 850, the address of the initial register-
content storage-location is placed into
memory locations 16538 and 16539. Note
that the address 16540 (409CH) has to be
entered in two commands. Line 840 en-
ters 64 (40H) and line 850 enters 156
(9CH). Line 860 calls the machine-lan-
guage routine.

The first three instructions of the ma-
chine-language program place the con-
tents of memory location 4099H (16537)
into the Z80’s accumulator. That value is
the code that defines the MSM5832 regis-
ter that will be accessed. (That location
was previously loaded by line 830 before
branching to the machine-language rou-
tine.) The OUT 00H,A instruction loads
the 7475 (IC7 of the interface circuit) with
the register code, and selects the
MSM5832 for inputting. The next 4 in-
structions retrieve the address of where
the MSM5832 register contents will be
stored in the ZX81’s memory. (That was
also previously defined in the BASIC pro-
gram, lines 840 and 850, before branch-
ing to the machine-language program.)

The instruction IN A, OOH inputs the
MSM5832 register contents. AND OFH
masks the four higher-order bits to logic
zeros, and LD (BC), A stores the
MSM35832 register contents in the ZX8!’s
memory.

The OUT 04H, A instruction deselects

continued on page 98

$861 LSNONY

{e]
)

PERSONAL DEFENSE AND PROPERTY PROTECTION
UTILIZE SPACE AGE TECHNOLOGY.
CAUTION THESE DEVICES CAN BE HAZARDOUS AND MAY SOON
BE ILLEGAL.

J.\ POCKET PAIN FIELD GENERATOR — IPG50
Assemble:

IPG5 Plan: $7.00 IPG5K.
(0] PHASOR PAIN FIELD CROWD CONTR
Assembled
.$15.00 PPF1K
s a plasma discharge capable of puncturing

RUBY LASERRAY GUN — Intense visible red beam burns and
[welds hardest of metals. MAY BE HAZARDOUS.
A RUB3AIl Parts Available for Completing Device$15.00
S
E
R
S

CARBON DIOXIDE BURNING, CUTTING LASER — Pro-
ducesa continuous beam of high energy. MAY BEHAZARDOUS.
LCS5..All Paris Available for Completing Device..$15.00
VISIBLE LASERLIGHT GUN — produces intense red beam for
sighting, spotting, etc. Hand held complete.
LGUS3..Plans..$10.00 (Kit & A bled Units A)
IR PULSED LASER RIFLE — Produces 15-30 watt infra-red
pulses at 200-2000 per sec.

LRG3........... All Parts & Diodes Available........... $10.00
BEGINNERS LOW POWER VISIBLE LASER — Choice of
source of monoch i

ohia)

lr_et:]. yellow, green — provides an
ight.

LHC2....... Plans........ $5.00 LHC2K......... Kitsers $29.50
SNOOPER PHONE — Allows user to call his premises and listen
in without phone ever ringing.

$59.50
iniature device clearly
transmits well over one mile. Super sensitive, powerful.
MFT1........ Plans........ $7.00 MFT1K.....Plans/Kit.....$39.50
WIRELESS TELEPHONE TRANSMITTER — Transmits both
sides of phone conversation over one mile, shuts off automatically.
VWPMS5...... Plans.......$8.00 VWPMSK.. Plans/Kit...$34.50
TALK & TELL AUTOMATIC TELEPHONE RECORDING
DEVICE — Great for monitoring telephone use.
TAT20 Assembled.....
TAT2

<H=—xCOmn

INTERFACING

continued from page 56

SNP20..........cooeecane ASSEMbIed. :-:uessmssan el $89.50 |

Our phone s open for orders anytime. Technicians are available 9-11
a.m., Mon-Thurs for those needing assistance or information. Send
for free catalog of hundreds more similar devices. Send check, cash,
MO, Visa, MC, COD to: INFORMATION UNLIMITED

DEPT R8, P.0. Box 716, Amherst. N. H. 03031 Tel: 603-673-4730

CIRCLE 88 ON FREE INFORMATION CARD

EXCEL DRILL
TITANMINIDRILL ..o $39.95
RELIANT MINIDRILLKIT§29.95
EXCEL MINI-DRILLS ARE_ HIGH-
PERFORMANCE. COMPACT ~AND
LIGHTWEIGHT FOR ALL THE DELICATE
AND MINUTE WORK INVOLVED WITH
ELECTRONICS, ENGRAVING, MODEL-
MAKING AND OTHER CRAFTS. THE PRECI-
SION DESIGN MAKES THEM AS EFFICIENT
AS DRILLS MANY TIMES THEIR SIZE
EACH DRILL KIT COMES COMPLETE WITH CASE AND 20 PIECE
ACCESSORY MINI TOOLS SUCH AS DRILLS, BURRS, BURCHES
AND DISCS. NOTE: RUNS ON 12 VOLTS D.C.

DRILL STAND FOR ABOVE ... K s $19.95
EXCEL PRINTED CIRCUIT BOARD KITS
CIRCUITBOARDKITSoooooee. oo $2495
COMPLETE KIT WITH POSITIVE RESIST PC BOARDS, ETCHANT,

DEVELOPER, GRAPHICS & TRAY.
CARBIDE P.C. DRILLS

A SPECIAL PURCHASE MADE IT POSSIBLE TO PASS A SAVINGS
ONTO YOU. THESE DRILLS NORMALLY SELL FOR AS MUCH AS
§3.95. ALL DRILLS HAVE A STANDARD 1/8 INCH SHANK.

O33DEC.SIZE.........ooovvvvnnnens$1.50 EA. OR 4/$5.00
.043 DEC. SIZE .$1.50 EA. OR 4/$5.00
082 DEC. SIZE ... $1.50 EA. OR 4/$5.00

LOGICPROBEKITcovivniieanieneennn .ONLY $5.95
NEEDED BY ANYONE WORKING WITH LOGIC IN THEIR PRO-
JECTS, HAS A RANGE. CONSISTS OF: SMALL G-10 P.C. BOARD ,
MEASURING 2-7/8" x 3/4" AND PRE-DRILLED. ONE SEVEN SEG-
MENT READOUT. ONE 1.C., TWO DIODES, THREE RESISTORS AND
ONE TRANSISTOR. WORKS OFF § VOLTS AND MAY BE TAKEN
FROM THE CIRCUIT BEING TESTED. INDICATES (i) HIGH, (0) LOW
NORMAL, AND (P) PULSING. EXCELLENT STUDENT PROJECT.

PRE-SCALER KITS
HAL 300 PRE
PC BOARD AND ALL COMPONENTS
HAL 300 AIPRE $24.95
PC BOARD AND ALL COMPONENTS WITH PRE-AMP ONBOARD
HAL 800 PRE$20.95
PC BOARD AND ALL COMPONENTS
HAL 800 AIPRE . . .
PC BOARD AND ALL G
HAL1.2GHZPRE-SCALER.ooioieiiiiiiiinennn
BUILT AND TESTED - RE(

SHIPPING INFORMATION: ORDERS OVER $25 WILL BE SHIPPED
POST-PAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES
ARE REQUESTED. ON ORDERS LESS THAN $25, PLEASE INCLUDE
ADDITIONAL $2.50 FOR HANDLING AND MAILING CHARGES.
MICHIGAN RESIDENTS ADD 4% SALES TAX. SEND 20° STAMP OR
SASE FOR FREE FLYER.

COMPLETE SETS OF P.C. BOARDS AVAILABLE FOR: UNICORN

ROBOT PROJECT. HEART-AMATIC PROJECT. PIANO-MATIC
PROJECT. AND MANY. MANY OTHER KITS AVAILABLE. «®

N LEY7e
ANWALC
HAL-TRONIX, INC. @ %.-\

SEDLE A St
PHONE (313) 285-1782 “HAL" HARGL DN NOWLAND

CIRCLE 75 ON FREE INFORMATION CARD

the MSM5832, which resumes normal
timing operations. Program execution
then returns to the BASIC language rou-
tine. Line 870 defines the next MSM5832
register which is to be input. Line 880
defines the next storage location for that
register’s contents, and if all 13 registers
in the MSM5832 have not been accessed,
the machine-language program is called
again. If all 13 registers of the MSM5832
have been accessed, program execution
stops.

After program execution stops, the
contents of all 13 registers of the
MSM5832 will reside in memory, in the
addresses listed in Table 12. Once the date
and time information reside in memory, it
is a simple matter to retrieve it and display
it using the PEEK instruction. For in-
stance, if you wish to retrieve the day of
the week, write this simple program, you
can enter the direct command:

PRINT PEEK 16546.

The number retrieved represents a day of
the week as defined in Table 13. (Of
course you could write a simple program
to give you back the actual day instead of

the number.)
If you want the time to be retrieved and
displayed try the program in Table 14.
And if you want to retrieve and display the
entire date, try the program in Table 15.

not the most elegant way to use the clock/
calendar circuit. You could put all of the
simple BASIC routines in a loop and have
the time information updated
periodically. To demonstrate updating,

make the following changes:

" Of course, using separate programs is’

@ Delete line 90 in the time-display pro-
gram (Table 14). ‘

® Change line 900 in the retrieval routine
(Table 8) to: 900 GOTO 20.

Those changes allow the time-display rou-
tine to print the time values (lines 10
through 80); go and get updated values
from the MSM5832 (lines 800 through
900); and return to the time display rou-
tine. The program does that until a
BREAK is entered.

We now have a good idea of how to
control the clock/calendar IC. Controll-
ing other external circuits and devices is
not too much different. Next month,
when we continue, we’1llook at how to do
that. When we’re finished, you’ll see how
we can add an alarm function to the clock/
calendar circuit. In addition to an alarm
function you can use the MSMS5832 in
conjunction with the ZX8! as a nighttime
light controller and‘a date/time home se-
curity system. R-E

~Y ‘Eﬁ C S o)

|

Interfacing the ZX

NEIL BUNGARD

P t 3 THIS MONTH WE’LL
a r use the principles es-
tablished in the first two parts of this series
to build some fun and useful microcom-
puter projects. They include a home-se-
curity system, a temperature-sensing
circuit, and methods of controlling high-
current devices with the microcomputer.

The number of things you can do with
your microcomputer and interface are
endless. In other words, the methods and
principles that we’ll use may be applied to
any number of projects that you might
dream up yourself. And you can combine
all of the circuits we present to do numer-
ous things. So don’t be afraid to take what
we start with and improve and expand on
it. Your imagination is the only limit on
what can be done.

TV interference

Before we get started building the add-
on circuits, we should address a problem
that is created by those circuits—T V-pic-
ture deterioration. As more integrated cir-
cuits are added to the Sinclair interface,
you will notice interference on your TV
picture. (Many ZX8/ users have trouble

o

Now that we’ve built the interfacing circuit
and discussed the basics of using it, let’s put
your Sinclair ZX81 or Timex Sinclair 1000 to
work! We’ll show you how to measure
temperature, create a security system, and

control high-power devices.

with screen interference even without
hooking anything up to the computer!)
You might want to try some of the follow-
ing quick-fix tips to help clear up your
picture.

One trick that sometimes works is to
roll up the connecting cable that goes be-
tween the ZX8/ and the antenna/ZX§8/
switching box. Another trick that helps a
little is to move the Sinclair away from the
TV set—elevating the TV set seems to
have the most favorable results. Perhaps
the easiest way to improve your picture is
to ground the antenna switching box to the
UHF-antenna input on the back of your
TV set. That can be done by wrapping a
copper wire around the switching box and
attaching its end to the UHF antenna in-
put. If you do those three simple things,
you should be able to obtain a picture
that’s almost as clear as the picture with-
out the interface circuit attached. Al-
though shielding the interface and
associated circuits in a metal case is a bit
more work than the previous fixes, it will
give better results.

A home-security system

The first interface add-on we’ll look at
is a home-security system. We’ll present

1

only a minimum-security system. But you
can add as much sophistication as you
want. The limiting factor is the amount of
program memory available on your mi-
crocomputer.

Figure 7 shows the security system’s
schematic. To guard eight doors and/or
windows, all you need are eight magnets,
8 reed switches, and one eight-bit three-
state latch (IC11, a 74LS373). You could,
of course, use other alarm switches (such
as pressure mats, or door-mounted plung-
er switches). But we’ll discuss reed
switches because they’re easy to mount.

You should mount the normally open
reed switch so that the magnet holds the
switch closed when the window or door is
closed. Then, when the window or door is
closed, the line associated with that win-
dow or door will be at a logic 0. If the
window or door is opened, the associated
reed switch will also open, and IC11 will
see a logic | (because of the pull-up re-
sistor). To check the status of the eight
windows or doors, all you have to do is
have the ZX8! periodically generate an
“IN 05" device-code pulse. That inputs
the window/door status information into
the accumulator of the Z80 where the sta-
tus of each bit can be checked. The flow

[G

861 H3AGW31d3S

~
ey

RADIO-ELECTRONICS

=~
N

IC11
7418373

9
.

1C12
741873

FIG. 7—SECURITY SYSTEM. The simple system sho

wn here can be made more complex—either by

adding more switches (or sensors) or by controlling some device other than a buzzer when a break-in

is sensed.

chart in Fig. 8 describes the software re-
quired to operate the security system.

You can, of course, make the program a
little more extensive. For example, you
can check each bit of the status informa-
tion to determine which window or door
was opened. Or, if you want to note the
time of the security breach (or to keep
track of when your teenage daughter
comes home) you can use the clock/calen-
dar circuit developed over the last two
months in conjunction with the security
system.

But because we have so much to cover,
we’ll keep things simple. The machine-
code and BASIC programs in Tables 16
and 17 will accomplish the task expressed
by the flow chart in Fig. 8. To load the
above programs, first type ‘10 REM
123456789012.” Next use the machine-
language entry program presented in Tab-
le 5 (Part 2) to load the machine-language
subroutines into the REM statement.
Once the machine language is loaded,
erase the entry program and enter the re-
mainder of the BASIC routine.

Now let’s look at how the programs
control the security-system circuit. Line
20 calls the machine-language routine lo-
cated at memory address 16514. The first
two instructions there define where the
security information is going to be stored
in memory once it is retrieved from the
74LS373. The command “IN A,05”
fetches the security information from the
74LS373. (Remember: You must use odd
input-device codes or bits D6 and D7 will
be masked out when you input. That’s one

START -

INPUT
SECURITY
BYTE

PRINT

“ALL DOORS AND
WINDOWS ARE

SECURE”

SOUND ALARM
& PRINT
“SECURITY
VIOLATION"

FIG. 8—THE SOFTWARE needed to control the
basic security system can be as simple as this
flowchart shows.

of those strange Sinclair idiosyncrasies
that you have to get used to.) The com-
mand “LD (BC),A” places the security
information into the memory location
pointed to by the BC register pair. That
storage location was defined in the first
two machine-language instructions as
408DH (16525). Execution returns to line
30 of the BASIC program, which sets
variable “B” equal to the security infor-
mation just placed in memory by the ma-
chine-language routine. If “B” is equal to
zero in line 40 (no security violation),
program execution branches to line 80
where an “all secure” message is printed,
and the entire process is repeated.

If, in line 40, “B” does not equal zero,
then a security violation has occurred. In
that case, program execution continues to
line 50, where another short machine-
code routine is called. That routine does
one thing: It generates an “OUT @8 de-
vice-code pulse. As you can see in Fig. 7,
that device-code pulse is fed to pin 2 of a
74LS73 flip-flop (ICI2). When the
74LS73 sees a negative-going pulse on
pin 2, it sets its output (pin 12) to a logic 0.
That causes the piezoelectric buzzer, PB1,
to turn on. After the alarm circuitis turned
on, program execution returns to line 60
in the BASIC program, where “security
violation” is written to the TV screen. In
line 70, program execution stops. When
pin 1 of the 74LS73 (IC12) is grounded by
pressing S9, the output of the 74LS73 is
reset to a logic 1 and the alarm is turned
off.

If you want to monitor more doors and
windows (or pressure mats, etc.) you can
add additional three-state devices to the
circuit and read the states by using a dif-
ferent input device-code pulse.

Temperature sensing

The next circuit we’1l discuss will allow
you to monitor temperature. It has a mea-
surement range from 0 to 100 degrees

Celsius with an accuracy of a couple of
degrees Celsius. You can see that it’s not a
precision thermometer, but you can use
the circuit to measure ambient tem-
perature or the temperature of a developer
bath in a darkroom. Based on the tem-
perature, you can have the computer turn
heaters or fans on or off (using control
circuits that we’ll get to shortly).

Referring to Fig. 9, the thermometer
circuit consists of National Semiconduc-
tor’s LM335 temperature sensor and the
ADCO0804 single-channel, eight-bit ana-
log-to-digital (A/D) converter.

The ADCO0804 connects directly to the
interface circuit developed in Part 1, and
only two signals are necessary to control
the circuit’s operation. The ADC0804
control lines are connected to the two
74LS138’s (IC’s 3 and 4) of the Sinclair
interface circuit. An “OUT @C” device
code pulse starts an analog-to-digital con-
version of the LM335’s output voltage. At
the end of the conversion (about 100 mi-
croseconds), a digital value representing
the sensor’s temperature is input into the
Z380’s accumulator with an “IN (9" de-
vice-code pulse.

The temperature-sensing circuit can be
adjusted via resistors R11 and R12 so that
the temperature will be read directly in
degrees Celsius. Potentiometers R11 and
R12 should be ten-turn (at least) potenti-
ometers so that a fine adjustment of the
zero setpoint and the span can be accom-
plished.

The LM335 should be soldered to a pair
of small-gauge, twisted wires and a small
amount of silicone rubber should be
placed on the leads to insulate them from
liquids in which the sensor might be sub-
merged.

Once you have the sensor prepared, you
can calibrate the circuit. You’ll need a
glass of ice water, a glass of boiling water,
and a Celsius thermometer that you know
to be acc rate. You will also need some
software.

Enter, for line 10, a 12-character RE-
Mark statement to reserve room for two
machine-language subroutines. Use the
machine-language entry program pre-
sented in Part 2, Table 5 to load the ma-
chine-language routines in Table 18. Then
load the BASIC program in Table 19.

Line 20 of that program calls the first of
the two machine-language subroutines—
the instruction “OUT @C,A,” which gen-
erates an output device-code pulse that
starts an analog-to-digital conversion by
the ADCO0804. Once the device-code
pulse has been sent, program execution
returns to line 30 of the BASIC program,
which calls the second machine-language
subroutine (at memory location 16517).

The first two instructions, “LD B,40”
and “LD C,8D,” set the memory location
where the temperature information is to
be stored. That location is 408DH or
16525. The third instruction, “IN A,09,”

_#hV
RS
1C13
LM335 3K 2 ?SSK

“TOX00

TWISTED
PAIR

£
150pF

.

Ril

e
Iwm: ,

R10
10K

i '

5V

1C14
ADCO0804

FIG. 9—TEMPERATURE SENSING CIRCUIT. Note that R11 and R12 should be multiturn-type potentiom-

eters—it makes calibration easier.

TABLE 18—TEMPERATURE
MEASURING
D30C OUT gC.A
C9 RET
06 40 LD B40
OE8D LD C,8D
_ DB@8 INADY
@2 LD (BC)A
C9 RET
TABLE 19—TEMPERATURE
MEASURING

20 LET A=USR 16514
30 LET A=USR 16517
40 LET B=PEEK 16525
50 CLS
60 PRINT ‘THE TEMPERATURE IS
“BCENTIGRADE’ .
70 PAUSE 100
80 GOTO 20

reads the temperature information from
the ADC0804 and “LD (BC),A” stores
the temperature information in memory.
Program execution returns in line 40 of
the BASIC routine, which sets the varia-
ble “B” equal to the temperature informa-
tion just placed in memory by the
machine-language subroutine. Line 50
clears the screen and line 60 prints the
new temperature. After a pause, the entire
sequence is repeated.

To calibrate the sensing circuit, run the

PARTS LIST—
 TEMPERATURE SENSOR
Resistors s watt, 5% unless otherwise
noted |
R9—3000 ohms
R10—10,000 ohms
R11, R12--10,000 ohms, multiturn poten-
tiometer
R13-—100,000 ohms
Capacitors
C1, C3—10-uF 10 volts, e!ectroiytlc
C2—150 pF, ceramic disc ;
Semiconductors
IC13—1 M335 temperature sensor
1C14-—ADC0804 analog-to-digital con-
verter
1C15-—741.832 quad OR gate

above program and place the LM335 into
the glass of ice water along with the
known-accurate thermometer. Allow the
sensor and thermometer to sit for a few
minutes and then adjust resistor R1 until
the thermometer reading and the number
printed on the screen are the same. That
adjusts the zero setting. (If the tem-
perature of the ice water is not zero, or
very close to zero, suspect that something
is wrong.)

Now place the LM335 and the mercury
thermometer into the glass of boiling
water. After you allow them to set for a
few minutes, adjust R2 until the reading
on the screen matches that of the mercury
thermometer. That sets the span of the

P86l H38aW31d3S

~
o

RADIO-ELECTRONICS

~
(-2

temperature-sensor circuit. With the cal-
ibration complete, temperatures mea-
sured between the two setpoints should be
accurate within a couple of degrees Cel-
sius. While that is not great accuracy, it is
accurate enough for many purposes. For
example, you could use the ZX8! to
monitor two different temperatures, say
the outdoor temperature and your attic
temperature. Then, you could use one of
the power-control circuits (that we’ll dis-
cuss next) to turn on your attic fan when
the attic temperature is higher than the
outside temperature. (But only in the
summer, of course.)

A power controller

An interface that can control logic cir-
cuits certainly has many applications. But
we’re sure you’ll agree that an interface
that can control devices that require high
voltage or current has many more possible
applications. For instance, if you want to
use a large siren and floodlights along
with the security system, or if you want to
activate a heater or fan, you’ll need more
power than the ZX8! or the interface alone
can provide. However, let’s look at a few
devices that can be connected directly to
the interface to control loads that require
higher voltage and higher current.

The first device we will consider for
power handling is the mechanical relay.
The relay is a simple device to use and can
be used for either AC or DC loads. Figure
10-a shows a typical relay/microcomputer
hookup. If a logic 1 is written to the latch
(a 74LS373) through D@ of the micro-
computers data bus, the relay will be de-
energized. If a logic @ is written to the
latch, the relay will be energized and the
load will be switched on. The disadvan-
tage of this configuration is that mechan-
ical relays that can be controlled with
logic-level signals typically can only han-
dle loads up to 0.5 amp at 120 volts.

Another kind of relay which has gained
popularity in the past five years is the
solid-state relay (SSR). Like its mechan-
ical counterpart, the SSR can be activated
with a logic-level signal, but it is gener-
ally used to switch AC loads. The new-
generation solid-state relay can switch
both AC and DC loads so that it is becom-
ing a direct replacement for the mechan-
ical relay. The real advantage of the SSR is

PARTS LIST—POWER
CONTROLLER
Resistors Y-watt, 5%
R14—100 ohms
R21—390 ohms ,
Semiconductors ;
1C16—741.8373 octal D-type latch
1C18—741L.S73 D-type flip-tlop
1C17—74L.S04 hex inverter ‘
IC19—MOC3010 optically coupled triac
driver \

TR1—triac, 6 amps, 200 voits
Other components
RY1—SPDT relay, 5-volt, 72 mA coil

IC16
7418373

IC18
741873

FIG. 10—YOU CAN CONTROL high-voltage circuits by either adding a solid-state or mechanical relay

(as in a) or by using a triac driver and triac (as in b).

that it can handle a great deal of power (for
example 35 amps at 110 volts), and has no
moving parts. That means that your ZX8!
can indirectly control a 3850-watt de-
vice—a formidable sized heater, for ex-
ample. The interface circuit for the solid-
state relay is the same as that for the me-
chanical relay. The solid-state relay’s par-
ticular disadvantage is that it is relatively
expensive (about $18.00 for a 120 volt
AC, 20-amp model).

The software listed in Table 20 is to
control the relay circuits. When the two
routines are stored in a REM statement,
they can be called with a simple “RAND
USR xxx statement, where xxx is the
starting address of the routine.

The third power-handling device we’ll
look at is a solid-state device for controll-
ing AC loads. The device is called a triac;
the interface circuit is shown in Fig. 10-b.
Connected to the gate of the triac is an
optically-coupled triac driver (which al-
lows a logic signal to control the triac).
Since the driver is optically coupled to the
triac, the power circuit is electrically iso-
lated from the computer.

To control the circuit, instead of writ-
ing to a latch (as was done in the relay
circuit), a set/reset flip-flop (a 74LS73) is
used to generate the bistable logic-levels
that control the power circuit. When an
“OUT 10” pulse is generated, it sets the
flip-flop’s output to a logic 1, turning the
triac off. When an “OUT 14” pulse is

generated, it resets the flip-flop’s output to
a logic @ and the triac is turned on. The
triac circuit is best suited for AC loads up
to 300 watts, and will not work on DC
loads at all.

The software to control the triac circuit
is a little different from the relay-circuit
software. The data bus is not needed for
control, instead, two output device-codes
are used. One device code turns the load
circuit on and the other device code turns
the load circuit off. The following ma-
chine language routine is all that is re-
quired to control the triac circuit:

To turn the triac on: OUT 1¢,A
To turn the triac off: OUT 14,A

Each of the three power-handling cir-
cuits has its own specific advantages, and
depending upon your application you can
choose the device that best suits your
needs.

We’ve saved the best add-on—a speech
synthesizer—for last. Unfortunately, that
means that you’ll have to wait until next
month for its description. R-E

RADIO-ELECTRONICS

~
o

OV

NEIL BUNGARD

P t 4 THIS MONTH, WE’'LL
a r finish up our look at
interfacing the ZX81/TS1000 by showing

you how you can add speech capabilities
to that machine.

Adding speech capabilities

A Digitalker speech synthesizer is the
last of the external circuits that we’ll be
adding to our interface. The Digitalker,
which is manufactured by National Semi-
conductor, consists of a speech processor
IC (SPC) and ROM that contains the syn-
thesizer’s vocabulary. (For more informa-
tion on the Digitalker, see the July 1982
issue of Radio-Electronics.)

We’ll be using a set of three IC’s (the
SPC and two 8 X 8K ROM IC’s) called the
DT1050. It sells for about $35 and is avail-
able from a number of suppliers, includ-
ing Jameco Electronics.

The complete synthesizer is not diffi-
cult to build: All that’s required is to add
simple filter and amplifier circuits to the
DT1050 IC set.

As we mentioned before, the syn-
thesizer’s vocabulary (which consists of
137 separate “words,” 2 tones, and 5 dif-

L

Learn how to add speech capabilities to
your ZX81/TS1000 in this concluding part of
our look at interfacing that computer. We’'ll
also show you how to free up the

computers port for other uses.

Interfacing the ZXS8S1

ferent silence durations) is contained in
two ROM IC’s (MM52164SSR1 and
MM52164SSR2). The vocabulary is listed
in Table 21. (That is the most popular
vocabulary set, although other ROM’s
with different, and larger, vocabularies
are available.)

The synthesizer circuit, as shown in
Fig. 11, consists of a digital and an analog
section. The digital section consists of the
speech-processor 1C22, two ROM’s,
IC23 and IC24, and two 7400-series IC’s
for control-signal decoding.

The analog section of the circuit con-
sists of IC25 and IC26. IC25 is an LM346
op-amp that is configured as a lowpass
filter with a rolloff frequency of about 200
Hz. The filter is required to take out the
high-frequency noise generated by the
Digitalker’s speech-synthesis technique.
IC26 is an LM386 audio-amplifier IC that
is used to drive a small 8-ohm speaker.

To use the Digitalker with the ZX81, 8
data-bus and 3 control-line connections
are required. The data bus carries infor-
mation to the SPC (telling it which word
to speak). The control signals are used to
time the information transfer and start the

speech sequence. Figure 12 shows the
control-signal timing necessary to write
information to the SPC.

That control-signal timing is accom-
plished with 3 output device-code pulses
(18,14, and 1C) and a IC20. When pin 2 of
the IC20 sees a low-going pulse accom-
plished with an “OUT 14” device-code
pulse, its output (pin 12) goes to a logic 0.
(That’s the negative-going edge of the
pulse generated on the cs input of the SPC
in the waveform shown in Fig. 12.) Next
an “OUT 18” device-code pulse is gener-
ated to the WR input of the SPC. That
pulse initiates the data transfer into the
SPC, and starts the speech sequence. The
final device-code pulse that is generated is
“OUT IC”, which sets the output of the
74LS73 (pin 12) back to a logic 1 and
deselects the SPC. (That’s the rising edge
of the pulse in the top waveform in Fig.
12)

As long as the Digitalker is speaking,
its INTR output (pin 6) is at logic @. At the
end of a speech sequence however, the
INTR line goes to a logic 1.

The status of INTR is checked by using
an “IN @C” device-code pulse which is

[Ry RI8 R19 s
Tgﬁ Zaook 90k 10k 01 -
= c7
= I[“ SS(FH
U INTERFACE | Y

\ CIRCUIT | = /

\ 1/4 LM346

!

) 40 39
! 15 25
' B
[} K|
[}

30

\ £

' | 32
/ ! jout 18) 3

1 4)— 38—
: | 5V WR %%
\ {out14) 4 7

) 9 K

], 0ce hop vl 1020 | by sfes ; —I

V|7] raLsm 20{21|18[19]22123] 1] 2| 3] 4] 6| 6 7| 8| 55| , l20021]18 18]22]23|1 J2 |5 |4 |5 |6 |7

L]

! — 12 1c23 B 1024 24
! :(OTUT-? 11 a8y oL MM52164 SSR1 it MMS52164 SSR2 B
i 10)) 1J 1622 |16]9 JTOI1[1314 [15]16]17 N RO BEREEE
\ I I MM54104 [T C14

\ | = SPC 01

; | 10f 20 g .b
! | L .
] 13 h2?') 21 [B——SBYinTR 27
1 | 748138 1 7418373 20 23
\ | E 2%

1 ' L 2

' (IN 6C) =
L —d RIS &

15K $ R16
MEG
‘V"‘V
XTAL2
4MHz
01—
L cs

C5
ISODF T 50pF

FIG. 11—THE SPEECH SYNTHESIZER circuit, thanks to large-scale integration, is not as complex as
you might think. For best voice quality, don’t use a very small speaker for SPKR1.

DATA

D0-07 VALID DATA

FIG. 12—THREE Z80 CONTROL SIGNALS are
needed to generate the timing shown here.

connected to the ENABLE pin of IC21, a
7415373 three-state latch. When IN gC is
generated, the status of the INTR output of
the SPC is sent through IC10 to the Z80
accumulator on data-bus bit D@. If D@ is a
logic @, the speech sequence is still in
progress. If D@ is a logic 1, then the
speech sequence has ended, and the next
word can be sent to the SPC.

We will demonstrate the capabilities of
the Digitalker by using a machine-lan-
guage routine and two BASIC programs.
Remember that the programs we’ll use are
only a starting point. You are encouraged
to modify the programs. For example, you

might want to use the Digitalker with any
of the other interface projects presented in
this series.

To begin, first reserve the required
space for the machine-language program
which operates the Digitalker’s circuitry.
A 20-character REM statement accom-
plishes that task. Then load the machine-
language subroutine listed in Table 22.
‘When the machine code has been entered,
erase the loader program (if you used one)
and load the BASIC program in Table 23.

Let’s follow the two programs to see
what they accomplish. Beginning in line
20 of the BASIC program, the variable
“A” (which represents the numerical val-
ue of the word that the Digitalker will be
asked to speak) is set to zero. (A complete
listing of the Digitalker’s 144-word vo-
cabularly and each word’s associated nu-
merical value is shown in Table 21.) Line
30 places the value of “A” into a memory
location where it will later be retrieved by
the machine-language subroutine that is
called by line 40.

The first three instructions of the ma-

chine-language program repeatedly
check the INTR output of the SPC to deter-
mine if a speech sequence has ended. As
we mentioned previously, that’s done by
generating an input device-code pulse (IN
(C), setting all bits of the accumulator to a
logic @ except bit D@ (AND 01), and ask-
ing if D@ is alogic 1 or alogic @ (JZ 82 40).
If D@ is a logic @, program execution re-
turns to the beginning of the machine-
language routine. If D@ is a logic 1, which
means the speech sequence has ended, the
numerical value of the next word to be
spoken is retrieved from memory location
4095H (16533), where it was previously
stored by the BASIC routine. That’s ac-
complished with the instructions: LD
B,40, LD C,95, and LD A,(BC). Once
the numerical value of the next word to be
spoken is in the accumulator of the Z80, it
is transferred to the SPC by a series of
output instructions (OUT 14, OUT 18,
and OUT 1C).

With the data transferred to the SPC,
the speech sequence starts automatically.
Program execution returns to the BASIC

¥861 HIGWIAON

~
-

RADIO-ELECTRONICS

~
N

8-bit
binary binary

Decimal address Decimal address
Word value S8 S1 Word value S8 S1
THIS IS DIGITALKER 000 00000000 Q 248 00110000
ONE 201 00000001 R 249 00110001
TWO 002 00000010 S 250 00110010
THREE 203 00000011 T 251 00110011
FOUR 204 00000100 U 252 00110100
FIVE 005 00000101 V 753 00110101
SIX 006 00000110 W 054 00110110
SEVEN 007 00000111 X 255 20110111
EIGHT 008 00001000 Y 056 00111000
NINE 029 00001001 Z 057 00111001
TEN 010 00001010 AGAIN 058 00111010
ELEVEN 211 00001011 AMPERE 059 20111011
TWELVE g12 00001100 AND 060 00111100
THIRTEEN 213 00001101 AT 261 09111101
FOURTEEN | 214 00001110 CANCEL 062 20111110
FIFTEEN 215 00001111 CASE 063 20111111
SIXTEEN 216 00010000 CENT 064 01000000
SEVENTEEN 217 00010001 400HERTZ TONE 265 01000001
EIGHTEEN 218 00010010 8OHERTZ TONE 066 01000010
NINETEEN 219 00010011 20MS SILENCE 067 01000911
TWENTY 020 00010100 49MS SILENCE 068 01000100
THIRTY 221 00010101 80MS SILENCE 269 01000101
FORTY @22 20010119 160MS SILENCE Q79 01000110
FIFTY 223 00010111 320MS SILENCE Q71 01000111
SIXTY 724 00011000 CENTI Q72 01001000
SEVENTY @25 00011001 CHECK 973 01001001
EIGHTY 726 00011019 COMMA Q74 01001010
NINETY @27 00011011 CONTROL @75 01001011
HUNDRED 228 00011100 DANGER 076 21001100
THOUSAND 229 00311101 DEGREE Q77 21001101
MILLION 230 00011110 DOLLAR 278 01001110
ZERO 231 002011111 DOWN 279 21001111
A 232 00100000 EQUAL 080 01010000
B 033 00100091 ERROR 281 21010001
C 234 00100010 FEET 082 21010010
D 035 20100011 FLOW 083 21010011
E 236 00100100 FUEL 084 21010100
Iz 237 00100101 GALLON 285 21010101
G 238 00100118 GO 286 01010110
H 239 00100111 GRAM 287 01019111
| 040 00101000 GREAT 088 01011000
J 041 00101001 GREATER 289 01011001
K 042 00101010 HAVE 090 21011010
L 043 00101011 HIGH 291 1011011
M 044 00101100 HIGHER 292 21011100
N 045 00101101 HOUR 293 21011101
(0] 046 00101110 IN 294 21011110
P 247 00101111 INCHES 295 21011111

TABLE 22—DIGITALKER CONTROL

DB 0C IN @C

E6 01 AND @1
CA 82 01 JZ 82 40
@6 40 LD B,40
QE 95 LD C,95
oA LD A,(BC)
D3 14 OuT 14
D3 18 OuT 18
D3 IC OuUT 1C
C9 RET

program in line 50, which increments the
variable “A” by 1. Line 60 sends program
execution back to line 30 where the new
value will be sent to the SPC and the next

TABLE 21—DIGITALKER VOCABULARY

word in Table 21 will be spoken by the
Digitalker.

When the synthesizer is controlled by
the programs we have just discussed, it
will speak, starting with the first word in
the listing in Table 21, and say all of the
words sequentially. You’ll notice that al-
though the last valid word has a numerical

TABLE 23—AUTOMATIC DIGITALKER
OPERATION

20 LETA=0

3@ POKE 16533, A

40 LET B=USR 16514
50 LET A=A+1

60 GOTO 30

8-bit
binary
Decimal address
Word value S8 S1
1S 296 01100000
IT @97 01100001
KILO 298 01100010
LEFT 299 01100011
LESS 100 21190100
LESSER 101 21100101
LIMIT 102 01100119
LOW 103 21100111
LOWER 104 01101000
MARK 105 01101001
METER 106 21101010
MILE 107 21101011
MILLI 108 21101100
MINUS 109 21101101
MINUTE 110 21101110
NEAR 111 21101111
NUMBER 112 01110000
OF 113 21110001
OFF 114 21110010
ON 115 21110011
ouT 116 21110100
OVER 117 21110101
PARENTHESIS 118 01110110
PERCENT 119 21110111
PLEASE 120 21111000
PLUS 121 21111001
POINT 122 21111010
POUND 123 21111011
PULSES 124 21111100
RATE 125 21111101
RE 126 21111110
READY 127 21111111
RIGHT 128 10000000
SS 129 10000001
SECOND 130 10000010
SET 131 10000011
SPACE 132 10000100
SPEED 133 10000101
STAR 134 10000110
START 135 10000111
STOP 136 10001000
THAN 137 100010@1
THE 138 10001010
TIME 139 10001011
TRY 140 10001100
UP 141 10001101
VOLT 142 10001110
WEIGHT 143 10001111

TABLE 24—MANUAL DIGITALKER
OPERATION

20 LET A$=""

30 IF A$=""THEN INPUT A$
40 LET B$=A$(TO 3)

50 LET A$=A$(4 TO)

60 LET A=VAL B$

70 POKE 16514,A

80 LET B=USR 16514

90 GOTO 3¢

value of 143, the program sequences
through 255—there are 112 undefined val-
ues which are spoken. Those undefined
values generate some garbled sounds. But

continued on page 82

RADIO-ELECTRONICS

=]
N

HADNMELs

Osculloscopes

For F/eld Servzce
1d L

Bonus featu
Component o

——

'<ter in all models!

HM605 60MHz Dual Trace - US$ 965,-
Sensitivity 5bmV-20V/div at 60 MHz, 1mV at 5MHz e Automatic
peak-value or normal triggering to 80 MHz e Delay line o Variable
sweep delay from 100ns-1s e Timebase range from 2.5s/div to
max. 5ns/div e Unique fast-rise-time 1kHz/1 MHz calibrator e
Bright high-resolution 14kV CRT.

HM204 20MHz Dual Trace - US$ 758,-
Sensitivity 5mV-20V/div e 1mV at 5MHz e Timebase range
1.25s/div-10ns/div e Automatic peak-value triggering to 50 MHz
Delay line o Variable sweep delay o Single sweep mode o
Y-Output e Z-modulation e Qverscan indicator e
Unique 1kHz/1MHz calibrator.

HM203 20MHz Dual Trace - US$ 605,

Western Europe’s best selling 20 MHz-Scope! e Sensitivity 2mV-
20V/div e Triggerbandwidth 40 MHz e Timebase range 0.2s —
max. 20ns/div

HM103 10MHz Single Trace - US$ 410,-

Small, compact service scope e Sensitivity 2mV-20V/div e Time-
base range 0.2us-0.2s/div e TV-V and TV-H triggering.

Modular

.1‘1050'

88-90 HarborRoad Po, Washmgton
Phone (516) 883 3837 - TWX (510) 223. 0889

CIRCLE 45 ON FREE INFORMATION CARD

ZX81 INTERFACE

continued from page 72

try them anyway—were sure you'’ll find some of them amusing.

For initial testing, you’ll want the Digiralker to speak all of the
words in its vocabulary. But if you want to use the synthesizer for
serious applications, you’ll need control over exactly what it
says. The next program allows you to command the Digitalker to
speak any sequence of words from the list in Table 21 so that you
can program phrases or sentences. Enter the BASIC program in
Table 24. Using that program, you can enter a word sequence as
a series of three-digit values. All words must be represented by
three digits: Any numerical value less than 100 must be padded
with leading zeros. (For example, a 1 must be represented as a {
01.) The digits are entered in a series, and delimiters are not
required between the three-digit groups. For example, if you
want the Digitalker to say “The time is 1:30,” the sequence you
enter is:

138139096001021

WIRE-WRAP
CARD-EDGE
CONNECTOR

WIRE WRAP PIN
BENT TOWARD : “PIGGYBACK" PC
FOIL TRACES BOARD

FIG. 13—THE INTERFACE CIRCUIT does not have to tie up your ZX81’s
port. An “extender” board will allow you to piggyback other devices to the
interface.

FIG. 14—THE FOIL
PATTERN for the dou-
ble-sided piggyback
extender board. Note
that only one pattern
is shown. The other
side is, of course, the

same.
|<—7 2.1/4 INCHES————)’

The BASIC program divides the sequence into its three-digit
word representations and sends them to the machine-language
routine where the Digitalker is commanded to sequentially
speak each word.

A piggyback connector

As you complete the interface projects we’re sure that you’ll
discover that the 1K or 2K memory in your computer really limits

PARTS LIST—SPEECH SYNTHESIZER

Resistors, Y4-watt, 5% unless otherwise noted
R15—1500 ohms
R16—1 megohm
R17-—820,000 ohms
R18—9100 ohms
R19-—10,000 ohms
R20—10 ohms, % watt

Capacitors

C4, €550 pF, ceramic disc
C6-C9, C11—0.1 uF, ceramic disc
C10—20 uF, 10 volts, electrolytic
C12—0.047 uF ceramic disc

C13, C14—.01 yF ceramic disc

Semiconductors

1C20—74L.573 dual J-K flip-flop
1C21—741.5373 octal D-type latch
1C22—MM54104 speech processor IC
1C23—MM52164 SSR1 speech ROM
1C24—MM52164 SSR2 speech ROM
1C25—1 M346 quad op-amp
1C26-—LM386 audio amplifier

Other components
XTAL2—4 MHz
SPKR1—8 ohms

what you can do. To eliminate that problem, you might want to
add a 16K or 64K memory pack. Both are commercially avail-
able for the Sinclair. The problem is that the interface circuit is
plugged into the same slot that the memory pack must plug into.
That problem can be solved by soldering a set of card-edge
fingers onto the wire-wrap socket so that a memory pack can be
piggybacked onto the interface circuit. Figure 13 shows how the
card-edge fingers are attached to the wire-wrap socket. Figure 14
is the foil pattern for one side of the board. (The pattern for the
other side is, of course, the same.)

The author of this four-part article would like to hear from any
readers with interesting circuits to share, or anyone with ques-
tions regarding interfacing the ZX8! or Timex Sinclair 1000. You
can contact Neil Bungard directly at PO Box 493, Blacksburg,
VA 24060 R-E

“We’veaddedtheacceleratorcardtothecomputer. Whydoyouask?”’

STUFF.

The growth of NTE quality replacement parts has
been nothing short of astronomical. And the proof
is in our new 1984 Replacement Master Guide,
destined to be the standard directory for technicians

across the country. In excess of 3,000 quality NTE
types are cross-referenced to more than 220,000
industry part numbers.

YOU'LL FIND ALL THE RIGHT STUFF FOR
REPLACEMENT, MAINTENANCE AND REPAIR:
« Transistors s+ MemoryIC’s
» Thyristors e+ Thermal Cut-Offs
-« Integrated Circuits - Bridge Rectifiers
~ « BRectifiers and « Unijunctions
Diodes « RF Transistors
» High Voltage + Microwave Oven
Multipliersand ~ Rectifiers
Dividers « Selenium Rectifiers
+ Optoelectronic + NEW! The Protector
Devices 6000™ Transient
« Zeners Voltage Protection
- Microprocessors Strip
and Support Chips

Look for our Replacement semiconductors in the
bright green polybags and cartons that list rating
limits, device type, diagrams and competitive
replacement right on the package. NTE quality
parts are available from your local NTE distributor
and come backed by our exclusive two-year
warranty. Ask for your FREE NTE Replacement
Master Guide and take off with NTE!

™

TRONICS, INC.

44 FARRAND STREET - BLOOMFIELD, NEW JERSEY 07003

¥861 HIGWIAON

[
w

	july_1984_57.tif
	july_1984_58.tif
	july_1984_59.tif
	july_1984_60.tif
	aug_1984_53.tif
	aug_1984_54.tif
	aug_1984_55.tif
	aug_1984_56.tif
	aug_1984_98.tif
	sep_1984_71.tif
	sep_1984_72.tif
	sep_1984_75.tif
	sep_1984_76.tif
	nov_1984_70.tif
	nov_1984_71.tif
	nov_1984_72.tif
	nov_1984_82.tif
	nov_1984_83.tif

